

FACULTAD DE CIENCIAS DE LA SALUD ESCUELA PROFESIONAL DE FARMACIA Y BIOQUÍMICA

PROTECCIÓN ANTIFÚNGICA *IN SITU* DEL ACEITE
ESENCIAL DE *Cymbopogon citratus* FRENTE A HONGOS
AMBIENTALES EN LA CONSERVACIÓN POST-COSECHA
DE *Fragaria vesca* var. Aromas

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE QUÍMICO FARMACÉUTICO

AUTORES:

Bach. CAMUS RAMOS, ELVA MARI Bach. DE LA CRUZ ORTIZ, NOEMÍ ELIZABETH

ASESOR:

MSc. CÓRDOVA SERRANO, GERSON

LIMA-PERÚ

2021

AGRADECIMIENTO

A nuestros maestros y asesor Msc. Gerson Córdova Serrano por su paciencia y por el aporte de sus conocimientos en nuestras asesorías durante todo este proyecto de investigación y también para los que de una u otra forma nos han apoyado como la Ing. Zulema Torres muchas gracias a todos.

Bach. Camus Ramos Elva Mari

Bach. De La Cruz Ortiz Noemí Elizabeth

DEDICATORIA

Ante todo, agradecer a Dios por brindarnos un día más de vida y darnos la fuerza necesaria para culminar este proyecto de investigación.

A nuestra familia por brindarnos su apoyo incondicional en cada momento, por aquellos que también ya no están entre nosotros que sabemos que desde el cielo nos están cuidando.

Bach. Camus Ramos Elva Mari

Bach. De La Cruz Ortiz Noemí Elizabeth

ÍNDICE GENERAL

AGRADECIMIENTO	ii
DEDICATORIA	iii
ÍNDICE GENERAL	iv
ÍNDICE DE TABLAS	V
ÍNDICE DE FIGURAS	vi
ÍNDICE DE ANEXOS	vii
RESUMEN	viii
ABSTRACT	ix
I. INTRODUCCIÒN	1
II. MATERIALES Y MÈTODOS	6
2.1. Enfoque y diseño de investigación	6
2.2. Población, muestra y muestreo	6
2.3. Variables de investigación	6
2.4. Técnica e instrumento de recolección de datos	7
2.5. Proceso de recolección de datos	7
2.6. Métodos de análisis estadístico	12
2.7. Aspectos éticos	12
III. RESULTADOS	13
IV. DISCUSIÓN	27
4.1. Discusión	27
4.2. Conclusiones	30
4.3. Recomendaciones	31
REFERENCIAS BIBLIOGRÁFICAS	32
ANEXOS	38

ÍNDICE DE TABLAS

Tabla 1. Protección antifúngica in situ del aceite esencial de	
Cymbopogon citratus frente a hongos ambientales en la conservación	
post-cosecha de Fragaria vesca.	10
Tabla 2. Análisis de varianza ANOVA de la inhibición de la proliferación in situ	
de hongos ambientales en Fragaria vesca mediante exposición del	
aceite esencial de Cymbopogon citratus durante 36, 48 y 60 horas.	16
Tabla 3. Análisis de Kruskal-Wallis de la inhibición de la proliferación <i>in situ</i>	
de hongos ambientales en Fragaria vesca mediante exposición del	
aceite esencial de Cymbopogon citratus durante 36 horas.	18
Tabla 4. Análisis de Kruskal-Wallis de la inhibición de la proliferación <i>in situ</i>	
de hongos ambientales en Fragaria vesca mediante exposición del	
aceite esencial de Cymbopogon citratus durante 48 horas.	20
Tabla 5. Análisis de Kruskal-Wallis de la inhibición de la proliferación <i>in situ</i>	
de hongos ambientales en Fragaria vesca mediante exposición del	
aceite esencial de Cymbopogon citratus durante 60 horas.	22
Tabla 6. Pruebas Post-Hoc de la inhibición de la proliferación in situ	
de hongos ambientales en Fragaria vesca mediante exposición del	
aceite esencial de Cymbopogon citratus durante 36 horas.	24
Tabla 7. Pruebas Post-Hoc de la inhibición de la proliferación in situ de	
hongos ambientales en Fragaria vesca mediante exposición del	
aceite esencial de Cymbopogon citratus durante 48 horas.	25
Tabla 8. Pruebas Post-Hoc de la inhibición de la proliferación in situ	
de hongos ambientales en Fragaria vesca mediante exposición del	
aceite esencial de Cymbopogon citratus durante 60 horas.	26

ÍNDICE DE FIGURAS

Figura 1. Porcentaje de inhibición de la proliferación de hongos ambientales	
en Fragaria vesca según horas y grupos de exposición del aceite esencial	
de Cymbopogon cltratus.	13
Figura 2. Porcentaje de inhibición de la proliferación de hongos ambientales	
en Fragaria vesca por grupos experimentales del aceite esencial de	
Cymbopogon cltratus.	14
Figura 3. Porcentaje de inhibición de la proliferación de hongos ambientales	
en fragaria vesca por horas de exposición del aceite esencial de	
Cymbopogon citratus.	15

ÍNDICE DE ANEXOS

ANEXO A. Operacionalización de variables	39
ANEXO B. Instrumentos de recolección de datos	40
ANEXO C. Porcentaje de inhibición por grupo de investigación	41
ANEXO D. Estadística descriptiva	42
ANEXO E. Homocedasticidad	43
ANEXO F. Comparaciones multiples Post-Hoc: 36, 48 v 60 horas	44

RESUMEN

Objetivo: Determinar la protección antifúngica in situ del aceite esencial de Cymbopogon citratus frente a hongos ambientales en la conservación postcosecha de Fragaria vesca var. Aromas. Materiales y método: Se realizó una investigación de enfoque cuantitativo, diseño metodológico experimental, explicativa y de corte longitudinal. Se realizó un muestreo por conveniencia y no probabilístico. El aceite esencial se extrajo a partir de la hoja fresca de la planta de *Cymbopogon citratus* por el método de arrastre de vapor. La selección de los hongos ambientales, en especial de Botrytis sp. se desarrolló por el método de observación directa al microscopio de una pequeña muestra de las frutas infestadas con hongos. Resultados: La protección antifúngica del aceite esencial de Cymbopogon citratus en concentración de 125 ppm es la que potencialmente tiene el mejor perfil a comparación de los demás grupos. Las 12 y 24 horas, en todos los grupos de experimentación se presentó un mismo porcentaje del 100% de inhibición, lo que significa que las *Fragaria vesca* se mantuvieron inalteradas durante 24 horas, comenzando su deterioro progresivo a las 36 horas a diferenciarse de los grupos de estudio. Conclusiones: Los porcentajes de inhibición fueron del 100 % del aceite esencial de Cymbopogon citratus sobre la especie Botrytis sp. en Fragaria vesca, a la concentración de 125 ppm hasta las 60 horas de exposición, observándose a las 72 horas una disminución del 50%.

Palabras clave: Aceite esencial, antifúngica, cuantitativo, *Cymbopogon citratus*, experimental.

ABSTRACT

Objective: To determine the in situ antifungal protection of *Cymbopogon* citratus essential oil against environmental fungi in the post-harvest preservation of Fragaria vesca var. Aromas. Materials and methods: A quantitative approach, experimental methodological design, explanatory and longitudinal research was carried out. A non-probabilistic convenience sampling was carried out. The essential oil was extracted from the fresh leaf of the Cymbopogon citratus plant by the vapour entrainment method. The selection of environmental fungi, especially Botrytis sp. was developed by the method of direct microscopic observation of a small sample of the fungus-infested fruits. **Results:** The antifungal protection of the essential oil of Cymbopogon citratus at a concentration of 125 ppm is potentially the one with the best profile compared to the other groups. At 12 and 24 hours, all experimental groups showed the same percentage of 100% inhibition, which means that the Fragaria vesca remained unaltered for 24 hours, with progressive deterioration beginning at 36 hours and differentiating from the study groups. **Conclusions:** The inhibition percentages were 100 % of the essential oil of Cymbopogon citratus on the species Botrytis sp. on Fragaria vesca, at a concentration of 125 ppm up to 60 hours of exposure, with a decrease of 50 % at 72 hours.

Key words: Essential oil, antifungal, quantitative, *Cymbopogon citratus*, experimental

INTRODUCCIÓN

Para tener una vida saludable es necesario tener una alimentación balanceada. Los alimentos saludables son esenciales para el ser humano para sentirse bien, mantenerse sano, con mucha energía y así evitar diversas enfermedades. Dentro de estos se encuentran el consumo de las frutas debido a su contenido de antioxidantes que estos a su vez son beneficiosos porque contribuyen a hacer más lento el envejecimiento y evita las enfermedades cardiovasculares. Se recomienda consumirlas antes de las comidas por su contenido de fibras que ayudan a la digestión¹. Según la Organización mundial de la salud (OMS), lo que nos alimentamos y bebemos puede afectar la capacidad de nuestro organismo, malos hábitos de alimentación pueden desencadenar problemas de salud en el futuro, como obesidad, enfermedades cardíacas, diabetes y diferentes tipos de cáncer ².

Dentro de las opciones de consumo de frutas a nivel mundial, debido a su sabor, aroma y propiedades nutricionales, encontramos a la *Fragaria vesca* (fresa), que pertenece al Reino: *Plantae*, la familia: *Rosaceae*, clase: *Magnoliopsida*. Esta fruta es roja oscura, más firme y es adaptable tanto para el mercado fresco como para procesado. Además de tener resistencia a condiciones adversas como la falta de agua, bajas y altas temperaturas ^{1,2}. Entre sus propiedades etnofarmacológicas se ha demostrado que ayuda a disminuir el nivel de colesterol malo (LDL) en sangre, gracias a la gran cantidad de ácido ascórbico, lecitina y pectina que contiene dicha fruta, además se le atribuye otras propiedades como, estimulante estomacal, depurativo, diurético, contra la diabetes, obesidad y gota ³. A nivel nutricional los frutos de *Fragaria vesca* son abundantes en antioxidantes como ácidos fenólicos, flavonoides y antocianinas. También es una fuente de vitaminas del grupo B, como la vitamina B6, la niacina, la riboflavina, el ácido pantoténico o el ácido fólico^{4,5}.

El cultivo y la comercialización de *Fragaria vesca*, se han incrementado a nivel mundial ya que se consume en todas partes del mundo, debido a su sabor, aroma y propiedades nutricionales. Según el mercado mundial de fresa; del 2007 al 2016 se puede verificar que es un fruto con mayor exportación e importación y consumo en diferentes países como: China, EEUU y Asia ⁶.

En el Perú, las más grandes plantaciones de fresa están ubicadas en las provincias del norte de la Región Lima; tales como: Barranca, Huaral, Huaura, Huacho. Siendo la etapa de cosecha en los meses octubre, noviembre y diciembre. Uno de los princípiales problemas que limitan la producción agroindustrial y la comercialización a gran escala de la *Fragaria vesca* es el ataque por hongos ambientales; entre ellos por hongos del género *Botrytis* sp, los cuales disminuyen la vida útil postcosecha de la fruta ^{7,8}. Esto ocasiona grandes pérdidas económicas, afectando la productividad tanto en términos de cantidad como en calidad del producto cosechado ⁹.

Durante el cultivo, la cosecha y el transporte de *Fragaria vesca*, esta es infectada por una variedad de hongos ambientales (entre ellos hongos del género *Botrytis* sp.), permaneciendo en estado latente hasta alcanzar las condiciones atmosféricas adecuadas (climas húmedos y frescos); y durante la maduración de dicha fruta se vuelven visibles (produciendo abundantes conidios y formando esporas) coincidiendo con el periodo de postcosecha (transporte y almacenamiento) ^{10,11}. Los hongos del género *Botrytis* sp son especies cosmopolitas que atacan a la fruta *Fragaria vesca*, que se manifiestan mediante la enfermedad conocida como la podredumbre gris o moho gris; la cual es principalmente causada por la especie *Botrytis cinérea*. Finalmente, cuando las condiciones son las adecuadas, crece rápidamente destruyendo totalmente a *Fragaria vesca* ¹².

Tomando en consideración lo previamente descrito, es de importancia garantizar la conservación postcosecha de la fresa para lograr que su producción y comercialización no se vea severamente comprometida, de esta manera, convertir a este producto en un rubro importante en la producción agro-industrial peruana.

En la búsqueda de nuevos métodos de conservación postcosecha, esta se ha inclinado hacia el uso de productos naturales, como por ejemplo los aceites esenciales de orégano (*Origanum vulgare* L.), tomillo (*Thymus vulgaris* L.), romero (*Rosmarinus officinalis* L.), cilantro (*Coriandrum sativum* L.), cebolla (*Allium cepa* L.), ajo (*Allium sativum* L.) y canela (*Cinnamomum zeylanicum*). Los estudios antes mencionados han demostrado que el empleo de

aceites esenciales es muy útil en la conservación de productos agrícolas como la *Fragaria vesca* ¹³.

Con el afán de evitar la proliferación de hongos ambientales (como el hongo *Botrytis cinérea*), se toma en consideración que el aceite esencial de *Cymbopogon citratus* (hierba luisa) pueda ser de utilidad la durante conservación postcosecha de la fruta *Fragaria vesca* variedad aromas¹⁴; puesto que posee diversas propiedades terapéuticas como el antimicrobiano, además de ser considerado uno de los aceites esenciales con un elevado efecto antioxidante¹⁵.

Cymbopogon citratus es una planta herbácea que pertenece a Reino: *Plantae*, Superfilo: *Cormobionta*, División: *Magnoliophyta*, Clase: *Liliatae* (Liliopsida), Subclase: *Commelinidae*, Orden: *Cyperales*, Familia: *Poaceae* Tribu: *Andropogoneae Dumort*, Género: *Cymbopogon*, Especie: *Citratus*, de aquí el nombre científico de *Cymbopogon citratus*, se le conoce también como limoncillo, sus hojas son de color verde oscuro tiene unos bordes ásperos llenas de cerdas parecidos al filo de un serrucho que al manipularse puede causar alguna lesión¹⁴. Las hojas poseen un fuerte olor a limón ya que en el lado central del mesófilo y entre los haces vasculares se encuentran las células donde se almacenan el aceite esencial el cual está presente el citral. Tradicionalmente ha sido utilizado para tratar la fiebre y las enfermedades infecciosas, pues es un poderoso antiséptico, antimicrobiano, antifúngico y propiedades terapéuticas. El té hecho de sus hojas se usa popularmente como antiespasmódico, analgésico, antipirético, diurético, antinflamatorio y sedante ¹⁶.

El aceite esencial de *Cymbopogon citratus*, se caracteriza por su fuerte olor a limón es un producto obtenido de las hojas y el tallo por medio de una destilación por arrastre de vapor. Se trata de un aceite esencial natural sin aditivos químicos¹⁴. Este aceite posee diversas propiedades terapéuticas, y posee propiedades antisépticas por el coeficiente fenol, con el método de arrastre de vapor en la caracterización del aceite de hierba luisa se puede ver que se encontraron tres componentes principales según el análisis de cromatografía de gases acoplada a espectrometría de masas, en el cuales son el beta mirceno con un 56.54%, el cual tiene la propiedad de ser antinflamatorio, beta citral en un

11.99% y alfa citral en un 17.40% que revisando las investigaciones podemos decir que ambos son antibacterianos¹⁷.

Investigaciones previas han demostrado el efecto antifúngico de los aceites esenciales por ejemplo según, Espinoza (2016) 18, determinó el efecto comparativo del aceite esencial y el extracto acuoso de hojas de Shinus molle, sobre el crecimiento del hongo Botrytis cinerea, y el extracto acuoso al 10%; a partir de los cuales se aplicaron tratamientos al: 0%, 3%, 7% y 15%, en medio agar papa dextrosa (APD) con cinco unidades muéstrales, donde el aceite esencial demostró tener mayor efecto antifúngico en comparación al extracto acuoso. Asimismo, Gamarra (2017) 19 permitió determinar que el tratamiento de cobertura comestible de gelatina-almidón con aceite esencial de clavo de olor al 0.2% presentó menor pérdida de peso, sólidos solubles y recuento de mohos y levaduras; mayor firmeza y menor variación. Además, Robello (2018) 20, realizó un estudio de la extracción del aceite esencial de Thymus vulgaris L. como componente biofungicida capaz de disminuir la germinación de *Botrytis cinérea*. Concluyendo que el biofungicida fue capaz de controlar a Botrytis cinérea hasta el tercer día de la evaluación. Para lo cual, Camacho (2017) 21, evaluó la capacidad antifúngica del extracto de champa sobre Botrytis cinérea y Rhizopus stolonifer en Rubus glaucus donde evaluó su acción antifúngica y demostró tener mayor capacidad inhibitoria en R. stolonifer que en B. cinerea. Donde Meza y Vargas (2013) ²², realizaron la evaluación de la actividad antibacteriana in vitro del aceite esencial de Cymbopogon citratus contra Propionibacterium acnes, utilizando concentraciones desde 0.02% a 5% de aceite se determinó que existe inhibición desde la concentración al 0.05% hasta la concentración del 5%. Por tanto, la concentración mínima inhibitoria (CMI) del aceite esencial es 0.05 µg/mL. Por tal motivo, fue la concentración elegida para la posterior formulación y elaboración de la loción. De manera similar, Maravì (2012) 23, estudia el efecto antibacteriano y antifúngico in vitro de tres aceites esenciales mediante el método de difusión en agar con disco demostrando un efecto en el siguiente orden: Cymbopogon citratus, Origanum vulgare y Mentha piperita, siendo asi una buena alternativa para evitar el uso de productos sintéticos en el control de los tres patógenos ensayados (Streptococcus mutans ATCC 25175, Lactobacillus acidophilus ATCC 10746 y Candida albicans ATCC 90028) dando como

resultado que el aceite esencial de *Cymbopogon citratus* al 90 % posee mayor actividad antifúngica que antibacteriana, ya que formó un halo inhibitorio de 76.15 mm sobre *Candida albicans* ATCC 90028.

En cuanto a la justificación del estudio, podemos decir que el uso de los aceites esenciales en la inhibición de la proliferación de los hongos ambientales (como los del género *Botrytis* sp), a nivel teórico, el estudio brindará evidencia y mayor información sobre los principios fitoquímicos de origen natural con respecto a los aceites esenciales de la hierba luisa (*Cymbopogon citratus*) y su relación en la capacidad de inhibición de *Botrytis cinérea* en la fresa.

Además, a nivel práctico, surge la necesidad de evitar la propagación de estos hongos para prolongar la vida postcosecha de la fresa. Ya que son situaciones que impiden el desarrollo o progreso de las personas que se dedican a este cultivo evitando muchas pérdidas económicas.

Tomando en consideración que los aceites esenciales son muy útiles en la conservación postcosecha y que el *Cymbopogon citratus*, posee un aceite esencial el cual ha sido demostrado que tiene propiedades antimicrobianas y antibacterianas; el objetivo de este estudio es determinar la protección antifúngica *in situ* del aceite esencial de *Cymbopogon citratus* frente a hongos ambientales en la conservación postcosecha de *Fragaria vesca* var. Aromas.

Finalmente, la hipótesis planteada es que al menos una concentración en partes por millón (ppm) del aceite esencial de *Cymbopogon citratus* tendrá la capacidad de disminuir la incidencia de los hongos ambientales en la conservación postcosecha de *Fragaria vesca*.

II. MATERIALES Y MÉTODOS

2.1. Enfoque y diseño de la investigación

El presente estudió es de enfoque cuantitativo, en cuanto al diseño metodológico es una investigación experimental, explicativa y de corte longitudinal. Es experimental porque se aborda a la variable independiente interviniendo en la cantidad que se hará incidir sobre la variable dependiente en un medio controlado no natural. Es longitudinal por que la recolección de datos se dará en varios puntos temporales del tiempo.

2.2. Población, muestra y muestreo

En el presente estudio se trabajó con la población de la especie *Fragaria* vesca de orden *Rosales;* familia *Rosaseae* y géneros *Fragaria*; esta especie proviene de la provincia de Huaral del departamento de Lima. Las muestras son de tipo no probabilístico, las cuales están conformadas por los especímenes recolectados en el mercado mayorista de frutas.

Con respecto a los criterios de inclusión, se escogieron las muestras de la fresa variedad aromas, que tengan buen sabor, peso aproximadamente (15 – 28 gramos por fruta), fresas sin lesiones, fresas maduras y de cosecha reciente.

Con respecto a los criterios de exclusión, no se admiten las muestras de fresas en mal estado, fresas con un peso menor que lo aproximado y fresas que no estén maduras.

2.3. Variables de investigación

El presente estudio presenta dos variables. La primera variable es el aceite esencial de *Cymbopogon citratus*. Según su naturaleza es de tipo cuantitativa y según su escala de medición es de razón.

Definición conceptual: Fracción liquida volátil obtenida por destilación de arrastre de vapor de agua, que contiene las sustancias responsables del aroma de la especie *Cymbopogon citratus* ¹⁴.

Definición operacional: concentración porcentual de la fracción volátil de *Cymbopogon citratus* La segunda variable es la incidencia de *Botrytis* sp. en la conservación postcosecha de *Fragaria vesca*. Según su naturaleza es una variable compleja que presenta tres dimensiones, o sub-variables, cada una con su propia naturaleza y escala de medición.

Definición conceptual:

Los frutos de *Fragaria vesca*, post-cosechas son contaminados por hongo ambientales como *Botrytis* sp a causa de la humedad, ya que es uno de los medios que permite la proliferación de dicho hongo²⁴.

Definición operacional: Cantidad de frutos contaminados con *Botrytis*. Sp. ante conservación postcosecha de *Fragaria vesca*.

2.4. Técnicas e instrumentos de recolección de datos

Las técnicas utilizadas durante la recolección de datos fueron de tipo analítico empleados frecuentemente en la investigación fitoquímica y de tipo microbiológico.

Por tal motivo se utiliza instrumentos de recolección de datos diseñados para examinar las variables y sub-variables relacionadas a un tamizaje fitoquímico básico y la evaluación del efecto antifúngico de productos naturales.

2.5. Proceso de recolección de datos

a) Recolección y selección de muestra botánica

Se seleccionaron las fresas de la variedad aromas, con buen aspecto en color, tamaño con un peso aprox. (15 – 28 gramos por fruta), estuvieron maduras y sin lesiones, las cuales fueron adquiridas en Huaral en distrito de Huaral del departamento de Lima.

Se compraron ocho kilos de fresa madura aproximadamente para la elaboración del proyecto, en la cual se utiliza por cada nivel de tratamiento veinte unidades de dicha fruta completamente sanas sin lesiones.

b) Preparación de la muestra botánica

Se utilizaron frutas maduras que se lavaron con agua corriente y se enjuagaran con agua destilada tres veces, posteriormente se desinfectara con una solución de hipoclorito al 1% el cual se enjuaga con agua destilada estéril dejándolo secar a temperatura ambiente (25 ± 3 °C).

En cada tratamiento se empleará 20 frutos como unidad experimental y tres repeticiones de cada una, aplicándoles el tratamiento correspondiente.

c) Obtención del aceite esencial de Cymbopogon citratus

El aceite esencial se extrajo a partir de la hoja fresca de la planta de *Cymbopogon citratus* por el método de arrastre de vapor, se cortó en pequeños trozos, luego se pesó seis kilos y se colocó en la máquina de acero industrial marca INOXI MEXICO a una temperatura de 25°C a 30°C con la finalidad de evitar pérdidas de aceite esencial por volatilización con una duración de 3 a 4 horas, el aceite esencial con el agua fueron recibidos en un vaso florentino, donde se logra la separación física por el principio de diferencia de densidades, el aceite decantado fue envasado en un frasco de vidrio de color ámbar.

d) Preparación de los hongos ambientales.

Se dejó a temperatura ambiente las frutas por cinco días hasta cuando empieza la pudrición causada por diversos hongos. Se tomaron muestras pequeñas de hongos con ayuda de un sacabocados de 4 milímetros (mm) de diámetro y se colocó en el centro de una caja petri con agar papa dextrosa agar (PDA). Se selló las cajas petri con cinta, se etiquetó y se protegió en fundas plásticas para evitar cualquier contaminación con otros hongos. Se mantuvo en crecimiento en un lugar oscuro a temperatura ambiente.

f) Preparación de suspensión de esporas de hongos ambientales

Para preparar la solución de esporas, se preparó una suspensión del micelio del hongo agregando agua destilada esterilizada en una caja de petri que contenía micelio sembrado, luego se raspa la superficie de la caja y se filtró la solución a través de una capa de gasa esterilizada; la suspensión filtrada se diluyó con agua destilada esterilizada hasta obtener la concentración de 1x 10⁵ esporas/mL.

Posteriormente se preparó la suspensión de esporas de 1.x10⁵ esporas/mL; La solución se colocó en un atomizador y se mantuvo en agitación hasta la inoculación de los frutos.

g) Conservación postcosecha de Fragaria vesca

- Características organolépticas de la fruta
 El análisis sensorial de las frutas investigadas se realizó a través de los sentidos de la vista, olfato, tacto y gusto ^{26, 27}.
- Determinación del pH
 La medición del pH de los frutos se determinará mediante el uso de cintas indicadoras ²⁸.

h) Protección antifúngica in-situ del aceite esencial de Cymbopogon citratus por el método de inmersión

El objetivo principal del aceite esencial, con su actividad microbiana, es impedir el crecimiento y la proliferación de los hongos causantes de la pudrición de la fruta en estudio: fresa variedad aromas. El método de inmersión se estableció como el método para conservar a las fresas en buen estado ya que con este método existe un recubrimiento total de la fruta y no existe pérdida de la solución²⁶.

Se consideró tres variables: temperatura, concentración y tiempo, las dos primeras con dos niveles cada una.

Preparación de los tratamientos

Para ello se preparó una solución madre de 100000 ppm disolviendo 50 mg de aceite esencial en 500 μL de Tween 20. A partir de esta dilución se prepararon diluciones seriadas al décimo hasta obtener una dilución de trabajo de 10000 ppm. Con la solución de trabajo se prepararon 3 soluciones "tratamiento" de aceite esencial de *Cymbopogon citratus* de 125, 75 y 25 ppm en un volumen final de 500 mL.

Aplicación de los tratamientos.

Se empleó una cantidad de 120 frutos de *Fragaria vesca* que fueron distribuidos en los siguientes grupos (Tabla 1):

Tabla 01. Protección antifúngica *in situ* del aceite esencial de *Cymbopogon* citratus frente a hongos ambientales en la conservación postcosecha de *Fragaria* vesca.

Se colocó veinte frutos de *Fragaria vesca* por cada grupo de experimentación. A cada fruto, cerca del pedúnculo, se le hizo una lesión

ID	GB	GCN	GCP	GE1	GE2	GE3
	Grupo	Grupo	Grupo	Grupo	Grupo	Grupo
Grupo	Blanco	Control	Control	experimental	experimental	experimental
	Biarico	Negativo	Positivo	1	2	3
Tratamiento	Agua	Tween-20	Fungicida	Aceite	Aceite	Aceite
Tratamiento	destilada	i weem-20	Benlate	esencial	esencial	esencial
Número de frutos	20	20	20	20	20	20
Dosis	50ml	0.2ml	0.125mg	125 ppm	75 ppm	25 ppm
Vía de administración		Aspersión	Aspersión	Aspersión	Aspersión	Aspersión

un periodo de secado de 5 minutos a temperatura ambiente.

de 2 mm de profundidad y 2 mm de ancho con una hoja de bisturí estéril. Luego cada fruto era sumergido en las soluciones de tratamiento durante 5 segundos según, corresponda a su grupo de investigación, seguido de

Finalmente, los frutos en todos los grupos de experimentación (con excepción del grupo GB, Tabla 01) fueron asperjados con la solución de esporas de *Botrytis sp.* 1.x10⁵ esporas*mL⁻¹.

- Almacenamiento y observación

Durante el ensayo, los frutos tratados fueron almacenados en las mismas condiciones de temperatura y humedad.

Los frutos sumergidos en la solución de aceite esencial, fueron colocados dentro contenedores de plástico previamente dispuestos para el almacenamiento. En cada contenedor se colocó los 20 frutos del mismo tratamiento a una distancia de 2 a 3 cm.

Se observó cada 12 horas a temperatura ambiente (25°C), registrando la fluctuación de la temperatura mediante mediciones continuas con un termo hidrómetro digital, además los frutos se cambió de posición cuidadosamente en cada observación para igualar las condiciones en todos los tratamientos.

En diez frutos de cada grupo de experimentación se registró el diámetro de las lesiones, en cada periodo de observación (cada 12 horas) se verificó la expansión de la infección en comparación con la superficie

total de cada fruto. Así mismo, en los 10 frutos restantes se registró el cambio en las características organolépticas y pH de las fresas.

Se utilizó una escala de categorías según el porcentaje de infección en la superficie del fruto correspondiente hasta el siguiente indicador porcentual: 0= 0%, 12= 0%, 24= 4%, 36= 6%, 48= 15%, 60=84% y 72= 100% de infección por fruto. Esta escala diagramática se utilizó para seguir el progreso de la infección de los frutos a las 48, 60 y 72 horas; Adicionalmente, se determinó el porcentaje de control de cada tratamiento sobre los hongos patógenos evaluados, en función del porcentaje de infección presentado por el testigo negativo tal como se evidencia en la siguiente ecuación.

% in vivo =
$$\left\{ 1 - \left\{ \frac{\text{% de infección de frutos tratados} - 72h}{\text{% de infección testigo negativo -72 h}} \right\} \right\} * 100$$

2.6. Métodos de análisis estadístico

La realización del análisis estadístico de las variables involucradas en esta investigación se aplicó las pruebas estadísticas descriptivas como frecuencias absolutas, frecuencias relativas y medidas de tendencia central. Además, se realizó pruebas de t-Student y ANOVA para observar diferencias entre los tratamientos aplicados para evaluar el efecto del aceite esencial de *Cymbopogon citratus* sobre la incidencia de hongos ambientales en la conservación de *Fragaria vesca*.

2.7. Aspectos éticos

Se realizó la investigación teniendo en cuenta los aspectos bioéticos de autonomía, no maleficencia, beneficencia y justicia durante la ejecución del proyecto de investigación. Cabe señalar, que en especies utilizadas en experimentación implica la educación del investigador para el logro de resultados fiables de experimentación que justifiquen su implementación en

la ciencia y enseñanza. Asimismo, se mantuvo un ambiente controlado para cumplir con los parámetros sanitarios y para asegurar la uniformidad en relación a las variables experimentales. Todo ello siempre en la búsqueda constante del conocimiento.

III. RESULTADOS

3.1. Características organolépticas de *Fragaria vesca* durante la evaluación de la protección antifúngica frente hongos ambientales.

Tabla 2. Color de *Fragaria vesca* durante la evaluación de la protección antifúngica frente hongos ambientales

					Horas de	Iniciado e	l Tratamien	to		
			A 28°C							
		0	12	24	36	48	60	72		
	CONTROL BLANCO	Rojo Brillante (20/20)	Rojo Brillante (20/20)	Rojo (10/20)	Rojo (10/20)	Rojo (15/20)	Rojo Oscuro (20/20)	Rojo Oscuro (20/20)		
	CONTROL NEGATIVO/ TWEEN 20	Rojo Brillante (20/20)	Rojo Brillante (20/20)	Rojo (10/20)	Rojo (10/20)	Rojo (15/20)	Rojo Oscuro (20/20)	Rojo Oscuro (20/20)		
Color	ACEITE ESENCIAL 25 ppm	Rojo Brillante (20/20)	Rojo Brillante (20/20)	Rojo (10/20)	Rojo (10/20)	Rojo (15/20)	Rojo Oscuro (20/20)	Rojo Oscuro (20/20)		
	ACEITE ESENCIAL 75 ppm	Rojo Brillante (20/20)	Rojo Brillante (20/20)	Rojo (10/20)	Rojo (10/20)	Rojo (15/20)	Rojo Oscuro (20/20)	Rojo Oscuro (20/20)		
	ACEITE ESENCIAL 125 ppm	Rojo Brillante (20/20)	Rojo Brillante (20/20)	Rojo (10/20)	Rojo (10/20)	Rojo (15/20)	Rojo Oscuro (20/20)	Rojo Oscuro (20/20)		
	CONTROL POSITIVO	Rojo Brillante (20/20)	Rojo Brillante (20/20)	Rojo (10/20)	Rojo (10/20)	Rojo (15/20)	Rojo Oscuro (20/20)	Rojo Oscuro (20/20)		

Fuente: Elaboración propia

En la Tabla 2 se puede observar que la *Fragaria vesca* de todos los grupos de investigación tuvieron un color un rojo brillante (fruta fresca) hasta las 12 horas y posteriormente mantuvieron el color hasta las 48 horas hasta un color oscuro signo de descomposición a las 60 horas de evaluación.

Tabla 3. Textura de *Fragaria vesca* durante el tratamiento de protección antifúngica frente hongos ambientales

	Horas de Iniciado el Tratamiento									
			A 28°C							
		0	12	24	36	48	60	72		
	CONTROL BLANCO	Carnosa (20/20)	Carnosa (20/20)	Carnosa (10/20)	Carnosa (10/20)	Blanda (15/20)	Blanda (20/20)	Blanda (20/20)		
	CONTROL NEGATIVO/ TWEEN 20	Carnosa (20/20)	Carnosa (20/20)	Carnosa (10/20)	Carnosa (10/20)	Carnosa (15/20)	Blanda (20/20)	Blanda (20/20)		
Textura	ACEITE ESENCIAL 25 ppm	Carnosa (20/20)	Carnosa (20/20)	Carnosa (10/20)	Carnosa (10/20)	Blanda (15/20)	Blanda (20/20)	Blanda (20/20)		
	ACEITE ESENCIAL 75 ppm	Carnosa (20/20)	Carnosa (20/20)	Carnosa (10/20)	Carnosa (10/20)	Blanda (15/20)	Blanda (20/20)	Blanda (20/20)		
	ACEITE ESENCIAL 125 ppm	Carnosa (20/20)	Carnosa (20/20)	Carnosa (10/20)	Carnosa (10/20)	Blanda (15/20)	Blanda (20/20)	Blanda (20/20)		
	CONTROL POSITIVO	Carnosa (20/20)	Carnosa (20/20)	Carnosa (10/20)	Carnosa (10/20)	BLANDA (15/20)	BLANDA (20/20)	BLANDA (20/20)		

En la Tabla 3 se puede observar que la *Fragaria vesca* de todos los grupos de investigación tuvieron una textura un carnosa (fruta fresca) hasta las 12 horas y posteriormente mantuvieron la textura hasta las 36 horas hasta una textura blanda signo de descomposición a partir de las 48 horas de evaluación.

Tabla 4. Olor de *Fragaria vesca* durante el tratamiento de protección antifúngica frente hongos ambientales

	Fecha: Horas de Iniciado el Tratamiento							to
		A 28°C						
		0	12	24	36	48	60	72
	CONTROL BLANCO	Caracteristico (20/20)	Caracteristico (20/20)	Caracteristico (10/20)	Caracteristico (10/20)	Fermentado (15/20)	Fermentado (20/20)	Fermentado (20/20)
	CONTROL NEGATIVO/ TWEEN 20	Caracteristico (20/20)	Caracteristico (20/20)	Caracteristico (10/20)	Caracteristico (10/20)	Fermentado (15/20)	Fermentado (20/20)	Fermentado (20/20)
Olor	ACEITE ESENCIAL 25 ppm	Caracteristico (20/20)	Caracteristico (20/20)	Caracteristico (10/20)	Caracteristico (10/20)	Fermentado (15/20)	FERMENTA DO (20/20)	FERMENTA DO (20/20)
	ACEITE ESENCIAL 75 ppm	Caracteristico (20/20)	Caracteristico (20/20)	Caracteristico (10/20)	Caracteristico (10/20)	Fermentado (15/20)	Fermentado (20/20)	Fermentado (20/20)
-	ACEITE ESENCIAL 125 ppm	Caracteristico (20/20)	Caracteristico (20/20)	Caracteristico (10/20)	Caracteristico (10/20)	Fermentado (15/20)	Fermentado (20/20)	Fermentado (20/20)
	CONTROL POSITIVO	Caracteristico (20/20)	Caracteristico (20/20)	Caracteristico (10/20)	Caracteristico (10/20)	Fermentado (15/20)	Fermentado (20/20)	Fermentado (20/20)

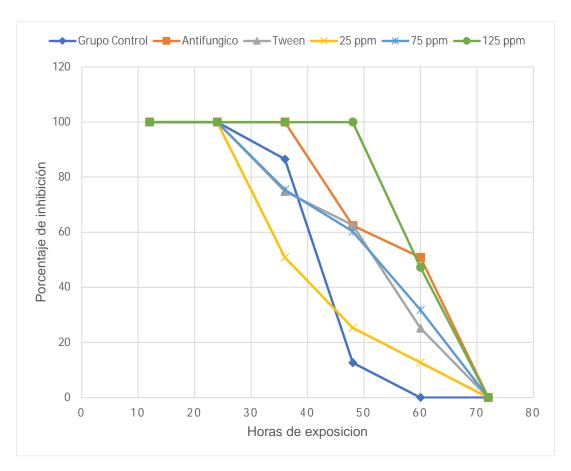
En la Tabla 4 se puede observar que la *Fragaria vesca* de todos los grupos de investigación tuvieron un olor característico a fruta fresca hasta las 12 horas y posteriormente mantuvieron su olor hasta las 36 horas hasta un olor fermentado signo de descomposición a partir de las 48 horas de evaluación.

Tabla 5. Sabor de *Fragaria vesca* durante el tratamiento de protección antifúngica frente hongos ambientales

		0	12	24	36	48	60	72
	CONTROL BLANCO	Dulce Agradable (1/20)	Dulce Agradable (1/20)	Agridulce (1/20)	Agridulce (1/20)	Ácido (1/20)	Ácido (1/20)	N/S
	CONTROL NEGATIVO/ TWEEN 20	Dulce Agradable (1/20)	Dulce Agradable (1/20)	Agridulce (1/20)	Agridulce (1/20)	Ácido (1/20)	Ácido (1/20)	N/S
Sabor	ACEITE ESENCIAL 25 ppm	Dulce Agradable (1/20)	Dulce Agradable (1/20)	Agridulce (1/20)	Agridulce (1/20)	Ácido (1/20)	ÁCIDO (1/20)	N/S
-	ACEITE ESENCIAL 75 ppm	Dulce Agradable (1/20)	Dulce Agradable (1/20)	Agridulce (1/20)	Agridulce (1/20)	Ácido (1/20)	Ácido (1/20)	N/S
	ACEITE ESENCIAL 125 ppm	Dulce Agradable (1/20)	Dulce Agradable (1/20)	Agridulce (1/20)	Agridulce (1/20)	Ácido (1/20)	Ácido (1/20)	N/S
	CONTROL POSITIVO	Dulce Agradable (1/20)	Dulce Agradable (1/20)	Agridulce (1/20)	Agridulce (1/20)	Ácido (1/20)	Ácido (1/20)	N/S

En la Tabla 5 se puede observar que la *Fragaria vesca* de todos los grupos de investigación tuvieron un sabor dulce agradable de fruta fresca hasta las 12 horas y posteriormente tuvieron un sabor más agridulce las 36 horas hasta un sabor acido signo de descomposición a partir de las 48 horas de evaluación.

Tabla 6. Acidez de *Fragaria vesca* durante el tratamiento de protección antifúngica frente hongos ambientales


	Horas de Iniciado el Tratamiento								
					A 28°C				
		0	12	24	36	48	60	72	
	CONTROL BLANCO	5	5	9	9	9	9	9	
	CONTROL NEGATIVO/ TWEEN 20	5	5	9	9	9	9	9	
рН	ACEITE ESENCIAL 25 ppm	5	5	9	9	9	9	9	
	ACEITE ESENCIAL 75 ppm	5	5	9	9	9	9	9	
	ACEITE ESENCIAL 125 ppm	5	5	9	9	9	9	9	
	CONTROL POSITIVO	5	5	9	9	9	9	9	

En la Tabla 6 se puede observar que la *Fragaria vesca* de todos los grupos de investigación tuvieron un pH de 5 hasta las 12 horas y posteriormente tuvieron un pH mas alcalino a partir de las 36 horas de evaluación.

En su conjunto las características organolépticas durante la evaluación de la protección antifúngica de la *Fragaria vesca* frente a hongos ambientales mediante el uso de aceite esencial de *Cymbopogon citratus* han seguido la misma evolución a lo largo de las horas sin alguna diferencia entre los grupos de investigación, evidenciando que la presencia de aceite esencial (incluso de un antifúngico comercial) no influye en el proceso natural de descomposición de la fruta aunque prevenga la proliferación de hongos ambientales por lo que pueden existir otros factores, como la temperatura, que pueden extender la natural descomposición de la fruta en conjunto.

3.2. Protección antifúngica *in-situ* del aceite esencial de *Cymbopogon citratus* por el método de inmersión.

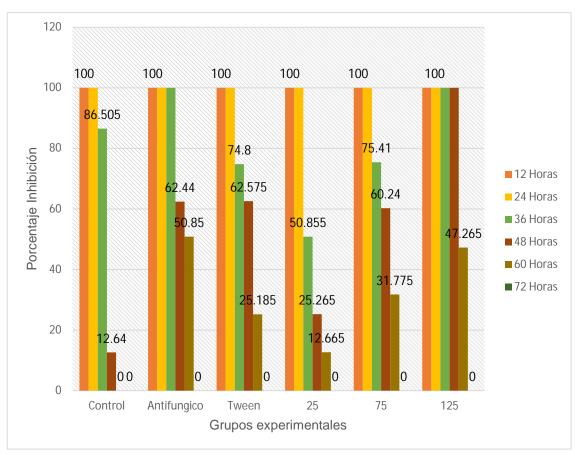

A continuación los resultados obtenidos:

Figura 1. Porcentaje de inhibición de la proliferación de hongos ambientales en *Fragaria vesca* según horas y grupos de exposición del aceite esencial de *Cymbopogon citratus*.

Fuente: Elaboración propia.

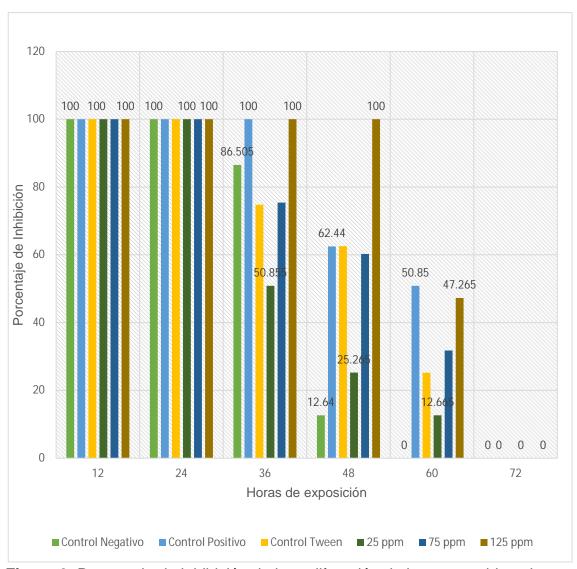

En la Figura 1 se puede observar en la evolución de la protección antifúngica del aceite esencial de *Cymbopogon citratus* en concentración de 125 partes por millón (ppm) es la que potencialmente tiene el mejor perfil a comparación de los demás grupos de estudio. También se observa que el grupo control negativo (tween 0.2 mL) presenta un aparente efecto inhibidor de la proliferación de hongos ambientales, el cual es muy similar al obtenido con la concentración de 75 ppm de aceite esencial, lo que sugiere una actividad antifúngica sinérgica por parte del tween.

Figura 2. Porcentaje de inhibición de la proliferación de hongos ambientales en *Fragaria vesca* por grupos experimentales del aceite esencial de *Cymbopogon citratus*

En la Figura 2, agrupando los porcentajes de inhibición obtenidos durante las horas de exposición con el aceite esencial de hierba *Cymbopogon citratus*, se puede señalar que la concentración de 125 ppm de aceite esencial ha logrado mantener un 100% de inhibición de la proliferación de hongos ambientales hasta las 60 horas de exposición, observándose recién a las 72 horas una caída de más del 50%.

Se va perfilando la similitud en la dinámica de inhibición de proliferación de hongos ambientales tanto con la concentración 75 ppm de aceite esencial en comparación de control negativo (tween) en el porcentaje empleado y observándose el grupo blanco, solamente después de las 24 horas de mantenerse la muestra de fresa en un 100% de inhibición, y comienza a decaer muy ligeramente llegando a 12.64% a las 48 horas.

Figura 3. Porcentaje de inhibición de la proliferación de hongos ambientales en *fragaria vesca* por horas de exposición del aceite esencial de *Cymbopogon citratus*

En la Figura 3 se puede observar que tanto a las 12 y 24 horas, todos los grupos de experimentación han presentado una mismo porcentaje de inhibición del 100% de inhibición ,lo que significa básicamente que las fresas se mantuvieron inalteradas durante 24 horas, comenzando su deterioro progresivo a las 36 a diferenciarse según grupos experimentales, observándose nuevamente que el mejor perfil de inhibición de la proliferación de hongos ambientales se da con la concentración de 125 ppm, observándose diferencias para los distintos tratamientos de grupos experimentales.

Uno de los aspectos a destacar es el crecimiento escalonado del porcentaje de inhibición si lo comparamos según concentraciones del aceite esencial, observándose que los menores porcentaje de inhibición se encuentran en la concentración de 25 ppm luego esta sube a 75 ppm y aumenta mucho más a 125 ppm lo que sugiere que hay un efecto directamente dependiente de la concentración del aceite esencial sobre la proliferación de inhibición de hongos ambientales.

Para lograr confirmar el efecto mostrado en las Figuras 1,2,3 se realizó un análisis estadístico de comparación de medias (ANOVA) y una prueba confirmativa, no paramétrica de Kruskal Wallis. Se presenta en las siguientes Tablas.

Tabla 7. Análisis de varianza ANOVA de la inhibición de la proliferación *in situ* de hongos ambientales en *Fragaria vesca* mediante exposición del aceite esencial de *Cymbopogon citratus* durante 36, 48 y 60 horas.

		Suma de cuadrados	gl	Media cuadrática	F	Sig.
Inhibición 36 horas	Entre grupos	34606,067	5	6921,213	15185,987	,000
	Dentro de grupos	51,957	114	,456		
	Total	34658,024	119			
Inhibición 48 horas	Entre grupos	96718,681	5	19343,736	28651,057	,000
	Dentro de grupos	76,967	114	,675		
	Total	96795,648	119			
Inhibición 60 horas	Entre grupos	38691,771	5	7738,354	17980,034	,000
	Dentro de grupos	49,064	114	,430		
	Total	38740,835	119			

Ho (a ≥ 0.05): La media de los porcentajes de inhibición de crecimiento de hongos ambientales son similares entre los grupos de experimentación.

H1 (a < 0.05): Al menos una media de porcentaje de inhibición de un grupo de investigación NO es similar a los demás grupos de experimentación

En la Tabla 2 se observa que el valor de significancia (a) es menor a 0.05; por lo que se acepta la H1 que indica que al menos una media de porcentaje de inhibición de un grupo de investigación NO es similar a los demás grupos de experimentación a las 36, 48 y 60 horas. Al ser los datos no paramétricos, fue necesario realizar una prueba confirmativa no paramétrica de Kruskal-Wallis para evaluar diferencia o similitudes en la distribución de los datos.

Tabla 8. Análisis de Kruskal-Wallis de la inhibición de la proliferación *in-situ* de hongos ambientales en *Fragaria vesca* mediante exposición del aceite esencial de *Cymbopogon citratus* durante 36 horas.

	Rangos								
	Agrupación	Rango promedio							
Inhibición 36	Control	20	70,50						
horas	Control positivo	20	100,50						
	Control tween	20	35,68						
	25 ppm	20	10,50						
	75 ppm	20	45,33						
	125 ppm	20	100,50						
	Total	120							

Estadísticos de prueba ^{a,b}				
	Inhibición 36 horas			
H de Kruskal-Wallis	114,157			
gl	5			
Sig. asintótica	,000			
a. Prueba de Kruskal Wallis				
b. Variable de agrupación: Agrupación				

	Hipótesis nula	Prueba	Sig.	Decisión
1	La distribución de INH_36H es la misma entre las categorías de AGRUPACION.	Prueba de Kruskal- Wallis para muestras independiente s	,000,	Rechazar la hipótesis nula.

Ho (a \geq 0.05): La distribución de los porcentajes de inhibición de crecimiento de hongos ambientales a las 36 horas es la misma entre los grupos experimentales. H1 (a < 0.05): Al menos la distribución del porcentaje de inhibición de un grupo experimental a las 36 horas NO es la misma a los demás grupos de experimentación.

En la Tabla 3 se observa que el valor de significancia (a) es menor a 0.05; por lo que se acepta la H1 que indica que al menos la distribución del porcentaje de inhibición de un grupo experimental a las 36 horas NO es la misma a los demás grupos de experimentación.

Tabla 9. Análisis de Kruskal-Wallis de la inhibición de la proliferación *in situ* de hongos ambientales en *Fragaria vesca* mediante exposición del aceite esencial de *Cymbopogon citratus* durante 48 horas.

Rangos			
	Agrupación	N	Rango promedio
Inhibición 48	Control	20	10,50
horas	Control positivo	20	80,38
	Control tween	20	78,53
	25 ppm	20	30,50
	75 ppm	20	52,60
	125 ppm	20	110,50
	Total	120	

Estadísticos de prueba ^{a,b}		
	Inhibición 48 horas	
H de Kruskal-Wallis	111,095	
gl	5	
Sig. asintótica	,000	
a. Prueba de Kruskal Wallis		
b. Variable de agrupación: Agrupación		

	Resumen de p	rueba de nipo	tesis	
	Hipótesis nula	Prueba	Sig.	Decisión
1	La distribución de INH_48H es la misma entre las categorías de AGRUPACION.	Prueba de Kruskal- Wallis para muestras independiente s	,000	Rechazar la hipótesis nula.

Ho: (a≥0.05): La distribución de los porcentajes de inhibición de crecimiento de hongos ambientales a las 48 es la misma entre los grupos experimentales.

H1 (a < 0.05): Al menos la distribución del porcentaje de inhibición de un grupo experimental a las 48 horas NO es la misma a los demás grupos de experimentación.

En la Tabla 4 se observa que el valor de significancia (a) es menor a 0.05; por lo que se acepta la H1 que indica que al menos la distribución del porcentaje de inhibición de un grupo experimental a las 48 horas NO es la misma a los demás grupos de experimentación.

Tabla 10. Análisis de Kruskal-Wallis de la inhibición de la proliferación *in situ* de hongos ambientales en *Fragaria vesca* mediante exposición del aceite esencial de *Cymbopogon citratus* durante 60 horas.

Rangos			
	Agrupación	N	Rango promedio
Inhibición 60	Control	20	10,50
horas	Control positivo	20	110,48
	Control tween	20	50,50
	25 ppm	20	30,50
	75 ppm	20	70,50
	125 ppm	20	90,53
	Total	120	

Estadísticos de prueba ^{a,b}			
	Inhibición 60 horas		
H de Kruskal-Wallis	116,280		
gl	5		
Sig. asintótica	,000		
a. Prueba de Kruskal Wallis			
b. Variable de agrupación: Agrupación			

	Resumen de pi	rueba de nipo	tesis	
	Hipótesis nula	Prueba	Sig.	Decisión
1	La distribución de INH_60H es la misma entre las categorías de AGRUPACION.	Prueba de Kruskal- Wallis para muestras independiente s	,000	Rechazar la hipótesis nula.

Ho: (a≥0.05): La distribución de los porcentajes de inhibición de crecimiento de hongos ambientales a las 48 es la misma entre los grupos experimentales.

H1 (a < 0.05): Al menos la distribución del porcentaje de inhibición de un grupo experimental a las 60 horas NO es la misma a los demás grupos de experimentación.

En la Tabla 5 se observa que el valor de significancia (a) es menor a 0.05; por lo que se acepta la H1 que indica que al menos la distribución del porcentaje de inhibición de un grupo experimental a las 60 horas NO es la misma a los demás grupos de experimentación.

Los resultados, tanto del análisis ANOVA como de Kruskal-Wallis, nos indican que hay una clara diferencia entre los porcentajes de inhibición de la proliferación in situ de hongos ambientales en Fragaria vesca de los grupos experimentales a las 36, 48 y 60 horas de exposición con aceite esencial de Cymbopogon citratus. Sin embargo, es importante analizar de manera específica estas diferencias y si estas se deben a la acción de una variable independiente (aceite esencial de Cymbopogon citratus) motivo por el cual, se realizaron pruebas Post-Hoc de Games-Howell cuyos resultados se muestran en las siguientes tablas:

Tabla 11. Pruebas Post-Hoc de la inhibición de la proliferación *in situ* de hongos ambientales en *Fragaria vesca* mediante exposición del aceite esencial de *Cymbopogon citratus* durante 36 horas.

HSD Tukey ^a					
Grupos experimentales	N	Subconjur	nto para alfa =	0.05	
		1	2	3	4
25 ppm	20	50,8550			
Control Tween	20		74,8000		
75 ppm	20		75,4100		
Control negativo	20			86,5050	
Control Positivo	20				100,0000
125 ppm	20				100,0000
Sig.		1,000	,056	1,000	1,000

Se visualizan las medias para los grupos en los subconjuntos homogéneos.

Observando la Tabla 6, a las 36 horas las concentraciones de 25 y 75 ppm tienen un menor efecto en comparación con el control positivo. Sin embargo, cabe resaltar que el grupo control tween y el grupo 75 ppm son muy similares. Se puede estimar que el tween tiene un efecto muy similar de protección antifúngica en comparación con 75 ppm de aceite esencial de *Cymbopogon citratus*.

Se resalta que, tanto el control positivo como la concentración de 125 ppm de *Cymbopogon citratus* se mantienen en un 100% de inhibición de proliferación de hongos ambientales.

a. Utiliza el tamaño de la muestra de la media armónica = 20.000.

Tabla 12. Pruebas Post-Hoc de la inhibición de la proliferación *in situ* de hongos ambientales en *Fragaria vesca* mediante exposición del aceite esencial de *Cymbopogon citratus* durante 48 horas.

Grupos	N		Subco	onjunto para a	lfa = 0.05	
experimentales		1	2	3	4	5
Control	20	12,6400				
negativo						
25 ppm	20		25,2650			
75 ppm	20			60,2400		
Control positivo	20				62,4400	
Control tween	20				62,5750	
125 ppm	20					100,0000
Sig.		1,000	1,000	1,000	,995	1,000
Se visualizan las	media	s para los gru	ipos en los s	ubconjuntos h	omogéneos.	

Observando la Tabla 7, a las 48 horas las concentraciones de 25 y 75 ppm tienen un menor efecto en comparación con el control positivo. El control negativo se perfila como el que tiene el menor efecto de protección antifúngica. Sin embargo, cabe resaltar que el grupo control tween y el grupo control positivo son muy similares. Se puede estimar que el tween tiene un efecto muy similar de protección antifúngica sinérgica a tomar en consideración.

Se destaca que la concentración de 125 ppm de *Cymbopogon citratus* se mantiene en un 100% de inhibición de proliferación sobre los hongos ambientales.

Tabla 13. Pruebas Post-Hoc de la inhibición de la proliferación *in situ* de hongos ambientales en *Fragaria vesca* mediante exposición del aceite esencial de *Cymbopogon citratus* durante 60 horas.

HSD Tukey ^a									
Grupos	Ν	Subconjunto para alfa = 0.05							
experimentales		1	2	3	4	5	6		
Control negativo	20	,0000							
25 ppm	20		12,6650						
Control tween	20			25,1850					
75 ppm	20				31,7750				
125 ppm	20					47,2650			
Control positivo	20						50,8500		
Sig.		1,000	1,000	1,000	1,000	1,000	1,000		
Se visualizan las	medias	s para los	grupos en lo	s subconjunt	os homogéne	eos.			
a. Utiliza el tamar	a. Utiliza el tamaño de la muestra de la media armónica = 20.000.								

Observando la Tabla 8, al finalizar la exposición con aceite esencial de *Cymbopogon citratus* (60 horas), el control positivo ha prevalecido en su efecto protector antifúngica, aunque el tratamiento con la concentración de 125 ppm se aproxima, aunque son diferentes estadísticamente. Se observa que mientras la concentración del aceite esencial va aumentando el porcentaje de inhibición va incrementando, por lo que a nivel estadístico se concluye que hay un efecto directamente relacionado de la inhibición del crecimiento antifúngica con la concentración en ppm de aceite esencial de *Cymbopogon citratus*.

IV. DISCUSION

4.1. Discusión de resultados

En los últimos años, el interés de los agricultores se ha centrado en la búsqueda de biofungicidas más seguros, como los aceites esenciales, para controlar las enfermedades de las plantas alimentarias en la agricultura. Los fungicidas sintéticos han sido eficaces para controlar patógenos como los del género *Botrytis cinerea*²⁹; sin embargo, su uso se ha relacionado con una mayor resistencia a los patógenos y efectos sobre la salud humana y el medio ambiente³⁰. Al mismo tiempo, un número creciente de consumidores busca productos frescos, naturales, libres de químicos y de alta calidad ³¹. Por lo tanto, existe la necesidad de investigaciones que aborden estas preferencias y al mismo tiempo reduzcan las pérdidas postcosecha de alimentos agrícolas como las fresas, asegurando la seguridad y el manteniendo la calidad durante el almacenamiento y el transporte, puesto que esta fruta es muy sensible a los hongos ambientales en especial al género *Botrytis cinérea*. En este contexto, se investigó la protección antifúngica del aceite esencial de *Cymbopogon citratus* frente a fresas (*Fragaria vesca*).

Evaluando la protección antifúngica a una concentración de 125 ppm de aceite esencial, se ha observado un 100% de inhibición del crecimiento de los hongos ambientales sobre *Fragaria vesca* a las 12, 24, 36 y 48 horas de exposición del aceite esencial (Figura 2), por la que se considera como potencialmente tiene el mejor perfil a comparación de los demás grupos. Estos hallazgos son similares a los obtenidos por Oliveira Filho et al. (2021), en Brasil, el cual analizo los aceites esenciales de Mentha spicata y Cymbopogon martinii los cuales presentaron la mayor actividad antifúngica in vitro mediante los métodos de contacto directo, contacto de vapor, germinación de esporas y dilución de micropozos. Asimismo, mostraron una reducción del 100% y 83% en la incidencia de la enfermedad, respectivamente³². En consecuencia, los aceites esenciales de Cymbopogon citratus pueden ser alternativas potenciales para el control de hongos hambientales Botryti sp. en fresas frescas postcosecha. Asi mismo podemos observar que el trabajo realizado por Reang et al. (2020), en India que analizó cinco aceites esenciales, Syzygium aromaticum, Thymus vulgaris, Lavendula anguistifolia, Cymbopogon citratus y Mentha piperita,

evaluando el crecimiento de hongo ambientales (Botrytis cinérea) en concentraciones del 0.5%, 1% y 1.5% in vitro. Observando así que entre los cinco aceites esenciales el Thymus vulgaris mostró la máxima inhibición del crecimiento del hongo ambiental Botrytis cinérea (50%), aunque los otros aceites esenciales también mostraron inhibición del crecimiento mostrando así que los aceites esenciales son bastantes útiles ante el control de hongos ambientales. Lo mismo que, Šernaitė et al. (2020), en Lituania, demostró que el aceite esencial de clavo en la concentración más baja (200 µl/L), presento el 80% de inhibición contra el patógeno³⁴. De forma similar, Martinazzo et al. (2019), en Brasil, realizaron pruebas in vitro de aceite esencial de Cymbopogon citratus en granos de maíz (Zea mays) infectados por Aspergillus flavus, donde la dosis de 1.0 µL/mL, mostró una inhibición del hongo al 100% ³⁵. Sin embargo, Rguez et al. (2018), en Túnez, en pruebas in vivo controló la infección de Botrytis cinérea después de la cosecha en frutos de tomate (Lycopersicon esculentum) mediante el aceite esencial de Cupressus sempervirensse a 1 mg/mL donde mostraron una reducción alrededor del 54% en la podredumbre inducida por este patógeno^{36.} De forma semejante, Zatla et al. (2017), en Argelia, mostraron que los tratamientos de frutos de fresa con aceite esencial de raíces de Daucus carota a concentración de 0.01 mL/L presentó una actividad protectora (100%) y preventiva (80%), frente a *Botrytis* cinérea³⁷. Los aceites esenciales de plantas y sus componentes principales, monoterpenos, sesquiterpenos y compuestos fenólicos pueden ser una fuente interesante contra las infecciones fúngicas³⁸. Son relativamente seguros y benignos para el medio ambiente. Cabe resaltar que muchos factores, como la región geográfica, la especie y la edad de la planta, son responsables de la alteración de los componentes químicos de los aceites esenciales y cambian los tipos y cantidades de los componentes principales³⁹. Por lo tanto, la variedad del género Cymbopogon puede producir aceites esenciales con diferentes composiciones. El aceite esencial de Cymbopogon citratus aumenta la acidez titulable en los frutos de fresa independientemente del manejo realizado, mediante un estudio previo del contenido del aceite esencial mediante cromatografía de gases donde se encuentra presenta sustancias terpénicas como citral y mirceno¹⁷. Las sustancias terpénicas están directamente relacionadas con el color, olor y aroma de las frutas, además de ser conocidas

por su acción antimicrobiana y antioxidante⁴⁰. Esto puede ser explicar el aumento de la acidez en las fresas que han sido tratadas con aceite esencial manteniendo así el producto viable para el consumo durante más tiempo⁴¹.

A su vez se ha observado (tabla 6) que el aceite esencial a las 36 horas en concentración de 75ppm, tiene una actividad antifúngica, donde se puede observar que el tween 20 también presenta una similitud de la imbibición en la proliferación de hongos ambientales como *Botrytis cinérea*.

Los resultados del presente estudio (figura 3) sugieren que los aceites esenciales de *Cymbopogon citratus* tiene efecto antifúngico *in situ* contra *Botrytis* sp. en la infección fúngica de frutos de fresa (la concentración de 125 ppm) y podrían utilizarse como tratamiento para la enfermedad de *Fragaria vesca*. Tomando en consideración que a la luz de los análisis estadísticos respectivos hay un alto nivel de significancia para considerar que el uso del aceite esencial de *Cymbopogon citratus* es una opción viable para mantener la calidad de la fruta *fragaria vesca*, ya que hubo protección antifúngica significativa a nivel estadístico.

En resumen, nuestros resultados revelaron que los aceites esenciales de *Cymbopogon citratus* probados en este estudio pueden suprimir eficientemente *in situ* la germinación de esporas y el crecimiento micelial de los hongos ambientales (*Botrytis sp*). Se prepararon tres concentraciones mínimas de partes por millón, como 25ppm, 75ppm y 125ppm del aceite esencial de *Cymbopogon citratus*, siendo evaluados cada 12 horas, dando como resultado el que mejor protección antifúngica presento fue el de 125ppm quien demostró la misma actividad de inhibición que el fungicida agrícola comercial. A su vez sin alterar las características organolépticas propias de dicha fruta, se mantuvieron hasta las 36 horas de conservación, que posteriormente empezaron naturalmente a deteriorarse, perdiendo su color, sabor y olor, hasta cumplir las 72 horas. En consecuencia, el desarrollo de productos comerciales naturales que contengan aceites esenciales de plantas podría ser una estrategia prometedora, como ecológica, para controlar la presencia de hongos patógenos en campos de cultivo de *Fragaria vesca*.

4.2. Conclusiones

- Se determinó la protección antifúngica in situ del aceite esencial de Cymbopogon citratus frente a hongos ambientales en la conservación postcosecha de Fragaria vesca var. Aromas
- Se determinó que la concentración mínima y útil de los aceites esenciales de Cymbopogon citratus, para obtener un efecto de protección frente a hongos ambientales en Fragaria vesca es de 125 ppm.
- Se determinó que los porcentajes de inhibición del crecimiento de hongos ambientales fueron del 100% con el aceite esencial de *Cymbopogon citratus* a la concentración de 125 ppm hasta las 60 horas de exposición, observándose a las 72 horas una disminución del 50%.
- Se determinó que los porcentajes de inhibición del aceite esencial de Cymbopogon citratus sobre los hongos ambientales como Botrytis sp en Fragaria vesca en 60 y 72 horas fueron de 50% a 0 % respectivamente, quizás se deba a la resistencia provocado por los hongos.
- Se determinó los porcentajes del 100 % en la inhibición del aceite esencial de Cymbopogon citratus sobre los hongos ambientales en Fragaria vesca, por 12, 24, 48 y 60 horas fueron predominantemente superiores a las de 72 horas. Es decir, la protección antifúngica se observa antes de los tres días.

4.3. Recomendaciones

- Recomendamos una alternativa de solución al uso de fungicidas químicos peligrosos para el tratamiento de los frutos durante el almacenamiento y el transporte para reducir la infección de moho gris. Este trabajo nos llevará a otro estudio in vivo para disminuir las pérdidas de rendimiento de la producción de frutas debidas a esta enfermedad.
- Recomendamos realizar otras investigaciones a temperaturas diferentes para poder mejorar u obtener un resultado mejor en cuanto a conservación postcosecha de la fresa.
- Es necesario proponer que estos aceites esenciales obtenidos de Cymbopogon citratus pueden actuar eficazmente como fungicidas naturales, convirtiéndose así en una alternativa a los fungicidas sintéticos como fumigantes para la conservación de frutas comestibles frescas.
- La eficacia de los aceites esenciales debe considerarse en comparación con los fungicidas tradicionales, este estudio proporcionó información para futuras investigaciones sobre el control de la podredumbre después de la cosecha utilizando aceites esenciales.
- Es imperativo incorporar los aceites esenciales a partir de *Cymbopogon citratus* en los sistemas de manipulación postcosecha para reducir la actual dependencia de los fungicidas químicos y es necesario seguir investigando.

REFERENCIAS BIBLIOGRÀFICAS

1. Farhud D. Impact of Lifestyle on Health. Iran J Public Health. 2015 Nov; 44(11): 1442–1444. Disponible en:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4703222/pdf/IJPH-44-1442.pdf

2. Brundtland GH. From the World Health Organization. Reducing risks to health, promoting healthy life. AMA . 2002 Oct 23-30;288(16):1974.

https://doi.org/10.1001/jama.288.16.1974.

3. Cappelletti R, Sabbadini S, Mezzetti B. Strawberry (*Fragaria ananassa*). Methods Mol Biol. 2015;1224:217-27.

https://doi.org/10.1007/978-1-4939-1658-0_18.

- 4. Guo C, Yang J, Wei J, Li Y, Xu J, Jiang Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research. 2003; 23(12):1719-1726.
- 5. Meyers K, Watkins C, Pritts M, Liu R. Antioxidant and Antiproliferative Activities of Strawberries. Journal of Agricultural and Food Chemistry. 2003;51(23):6887-6892.
- Gol NB, Patel PR, Rao TVR. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195.

https://doi.org/10.1016/j.postharvbio.2013.06.008

- 7. Mitcham E J, F G Mitchell. Fresas y frutas de arbusto. Kader A. Tecnología postcosecha de cultivos hortifrutícolas. Davis, CA: Postharvest Technology Research & Information Center, UC; 2007.
- 8. Bhaskara Reddy M, Angers P, Gosselin A, Arul J. Characterization and use of essential oil from *Thymus vulgaris* against *Botrytis cinerea* and *Rhizopus stolonifer* in strawberry fruits. Phytochemistry. 1998; 47(8):1515-1520.

- 9. Benito P, Arranz M, Eslava A. Factores de patogenicidad de *Botrytis cinerea*. Revista iberoamericana de micología. 2000: 17:43-46.
- 10. Cotrina, J. Uso de *Gliocladium roseum* para el control de *Botrytis cinerea* en fresa. Tesis Título Profesional. UNHEVAL, EAP Agronomía, Huánuco, 2001.
- 11. Espinosa De Los Monteros, María. Estudio de la variabilidad genética y organización cromosómica en el hongo fitopatógeno *Botrytis cinerea*. Tesis Doctoral UCA, Facultad de Ciencias del Mar y Ambientales, España, 2006.
- 12. Almenar R, Eva M. Envasado activo de fresas silvestres. Tesis Doctoral UDV, Instituto de agroquímica y tecnología de alimentos. España, 2005.
- 13. Ayala-Zavala. Protección antifúngica y enriquecimiento antioxidante de fresa con aceite esencial de hoja de canela. Rev Fitotec Mex. 2013; 36(3):217–24.
- 14. Rivadeneira V, De Benavente H. Fundación Chankuap. Ficha técnica. Aceite esencial hierba luisa. Macas Ecuador. 2011; 2p.
- 15. Trinetta V, Floros JD, Cutter CN. Sakacin a-containing pullulan film: An active packaging system to control epidemic clones of *Listeria monocytogenes* in ready-to-eat foods. J. Food Saf. 2010: 30, 366–381.

https://doi.org/10.1111/j.1745-4565.2010.00213.x

- 16. Azaña Diaz V, Castillo Vasquez L. Caracteristica del aceite Cymbopogon citratus y determinacion del porcentaje relativo. Universidad Nacional De Trujillo; 2017.
- 17. Camus Ramos E, De La Cruz Ortiz N. Caracterización fisicoquìmica del aceite de *Cymbopogon citratus*. [Tesis]. Lima: Universidad María Auxiliadora; 2019. Disponible en:

http://repositorio.uma.edu.pe/bitstream/handle/UMA/248/14.pdf?sequence= 1&isAllowed=y.

18. Espinoza I. Efecto comparativo de aceite y extracto molle sobre *Botrytis cinérea*. [Tesis]. Trujillo: Universidad Nacional de Trujillo; 2016. Disponible en:

https://dspace.unitru.edu.pe/bitstream/handle/UNITRU/8770/Espinoza%20 Pantigozo%2c%20lvonne%20Kelly.pdf?sequence=1&isAllowed=y

- 19. Gamarra Reyes A. Efecto de la concentración de aceite esencial de clavo de olor en la cobertura comestible a base de gelatina en recuento de mohos y levaduras en bayas de aguaymanto. 2017.
- 20. Rovello A. Elaboración de un biofungicida a partir de extractos vegetales para controlar *Botrytis cinerea* en uva (*Vitis vinifera* L). 2018.
- 21. Camacho-Téllez Ge, Nieto-Gómez Kv. Evaluación de la capacidad antifúngica del extracto de champa sobre *Botrytis cinerea* y *Rhizopus stolonifer* en mora (*Rubus glaucus*). 2017;69. Disponible en:

http://Repository.Lasalle.Edu.Co/Handle/10185/24791.

22. Meza K, Vargas G. Evaluación de la actividad antibacteriana *in vitro* del aceite esencial de Hierba Luisa (*Cymbopogon citratus* (Dc) Stapf), Poaceae en una formulación cosmética con finalidad antiacneíca. Tesis. 2013;1–100. Disponible en:

http://Dspace.Ups.Edu.Ec/Bitstream/123456789/5081/1/Ups-Cyt00109.Pdf.

- 23. Maraví Inga G. Efecto antibacteriano y antifúngico del aceite esencial de Mentha Piperita (Menta), Origanum vulgare (Orégano) y Cymbopogon citratus (Hierba Luisa) sobre Streptococcus mutans ATCC 25175, Lactobacillus Acidophilus ATCC 10746 y Candida albicans ATCC 90028. Tesis. 2015;53(9):1689–99.
- 24. Farias P, Silva J, Souza C, Fonseca F, Brandi I, Martins E et al. Antioxidant activity of essential oils from condiment plants and their effect on lactic cultures and pathogenic bacteria. Ciência Rural. 2019; 49(2).
- 25. Caner, C.; Aday, M.S.; Demir, M. Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging. Eur. Food Res. Technol. 2008; 227: 1575–1583. https://doi.org/10.1007/s00217-008-0881-3
- 26. Timudo-Torrevilla, O.E.; Everett, K.R.; Waipara, N.W.; Weeds, K.S.H.B.-W.; Langford, G.I.; Walter, M. Present status of strawberry fruit rot diseases in New Zealand. N. Z. Plant Prot. 2005, 58, 74–79.

https://doi.org/10.30843/nzpp.2005.58.4257

- 27. Taborda L. Efecto fungistático de extractos y aceites esenciales de *Lippia* origanoides HBK y *Thymus vulgaris* como alternativas de manejo de *Colletotrichum musae* en banano y *Botrytis cinerea* en fresa. Tesis [Internet]. 2013;87. Disponible en: http://www.Bdigital.Unal.Edu.Co/12710/
- 28. Garcia, L.C.; Pereira, L.M.; de Luca Sarantópoulos, C.I.G.; Hubinger, M.D. Effect of Antimicrobial Starch Edible Coating on Shelf-Life of Fresh Strawberries. Packag. Technol. Sci. 2011; 25: 413–425.

https://doi.org/10.1002/pts.987.

- 29. Petrasch S, Knapp SJ, Van Kan JL, Blanco-Ulate B. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen *Botrytis cinerea*. Mol. Plant Pathol. 2019, 20, 877–892. https://doi.org/10.1111/mpp.12794.
- 30. Tahir HE, Zou X, Jiyong S, Mahunu GK, Zhai X, Mariod AA. Quality and postharvest-shelf life of cold-stored strawberry fruit as affected by gum arabic (*Acacia senegal*) edible coating. J. Food Biochem. 2018; 42, e12527.

https://doi.org/10.1111/jfbc.12527.

31. Wedge DE, Curry KJ, Kreiser B, Curry A, Abril M, Smith BJ. Fungicide Resistance Profiles for 13 *Botrytis cinerea* Isolates from Strawberry in Southeastern Louisiana. Int. J. Fruit Sci. 2013; 13: 413–429.

https://doi.org/10.1080/15538362.2013.789253

32. Oliveira Filho J, Cruz Silva G, Aguiar A, Cipriano L, Azeredo H, Bogusz Junior S, Ferreira MD. Chemical composition and antifungal activity of essential oils and their combinations against *Botrytis cinerea* in strawberries. Journal of Food Measurement and Characterization. 2021; 15: 1815–1825.

https://doi.org/10.1007/s11694-020-00765-x

- 33. Reang SP, Mishra JP, Prasad R. In vitro antifungal activities of five plant essential oils aginas *Botrytis cinerea* causing gray mold of orange. Journal of Pharmacognosy and Phytochemistry 2020; 9(3): 1046-1048. Disponible en: https://bit.ly/3vPhlzp
- 34. Šernaitė L, Rasiukevičiūtė N, Dambrauskienė E, Viškelis P, Valiuškaitė A. Biocontrol of strawberry pathogen *Botrytis cinerea* using plant extracts and essential oils. Zemdirbyste-Agriculture. 2020; 107(2): 147–152.

https://doi.org/10.13080/z-a.2020.107.019.

35. Martinazzo AP, de Oliveira F, Teodoro CE. Antifungal activity of *Cymbopogon citratus* essential oil against *Aspergillus flavus*. Ciência E Natura. 2019; 41: 1-8.

https://doi.org/10.5902/2179460X36055

36. Rguez S, Djébali N, Ben Slimene I, Abid G, Hammemi M, Chenenaoui S, et al. *Cupressus sempervirens* essential oils and their major compounds successfully control postharvest grey mould disease of tomato. Industrial Crops and Products. 2018; 123, 135–141.

https://doi.org/10.1016/j.indcrop.2018.06.060

37. Tabet Zatla A, Dib MA, Djabou N, Ilias F, Costa J, Muselli A. Antifungal activities of essential oils and hydrosol extracts of *Daucus carota* subsp. sativus for the control of fungal pathogens, in particular gray rot of strawberry during storage. Journal of Essential Oil Research. 2017; 29(5), 391–399.

https://doi.org/10.1080/10412905.2017.1322008

38. Telci I, Demirtas I, Sahin A. Variation in plant properties and essential oil composition of sweet fennel (*Foeniculum vulgare* Mill.) fruits during stages of maturity. Industrial Crops and Products. 2009; 30: 126–130.

https://doi.org/10.1016/j.indcrop.2009.02.010

- 39. Dorman HJ, Deans SG. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. Journal of Applied Microbiology. 2000; 88: 308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x.
- 40. Felipe LO, Bicas JL. Terpenos, aromas e a química dos compostos naturais. Quím. nova esc. São Paulo-SP, BR, 2017;39(2):120-30.

https://bit.ly/34C77pY

41. Guimarães LGL, Cardoso MG, Sousa PE, Andrade J, Vieira SS. Atividade antioxidante e fungitóxica do óleo essencial de capim-limão e do citral, Rev. Ciênc. e Agron. 2011;42 (2):464-72.

https://doi.org/10.1590/S1806-66902011000200028

42. Bustamante KGL. Avaliação da atividade antimicrobiana do extrato etanólico bruto da casca da sucupira branca (*Pterodon emarginatus* Vogel) Fabaceae. Revista Brasileira de Plantas Medicinais, 2010;12(3):341-45

https://doi.org/10.1590/S1516-05722010000300012

ANEXOS

ANEXO A. Operacionalización de variables

VARIABLE	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	NATURALEZA	ESCALA DE MEDICIÓN	MEDIDA	INDICADORES	UNIDADES DE MEDIDA
Aceite esencial de Cymbopogon citratus	Fracción liquida volátil obtenida por destilación de arrastre de vapor de agua, que contiene las sustancias responsables del aroma de la especie Cymbopogon citratus	Concentración porcentual de la fracción volátil de Cymbopogon citratus	No presenta	Cuantitativa	De razón	Directa	Porcentaje de aceite (peso/volumen)	- Porcentaje (%)
			Características organolépticas	Cualitativa	Nominal	Directa	- Color - Olor - Textura	Especificaciones dadas
Incidencia de hongos ambientales en la	Proporción de frutos sanos que, a lo largo del periodo post-cosecha y producto de la	Cantidad de frutos contaminados	Efecto antifúngico in situ del aceite esencial de Cymbopogon citratus	Cuantitativa	Razón	Directa	- Diámetro de crecimiento de la colonia	- Milímetros
conservación post-cosecha de <i>Fragaria</i>	humedad, son contaminados con el hongo del	con hongos patógenos					- Porcentaje de control	Porcentaje de infección (%)
-	género <i>Botrytis</i> sp.		Conservación post-cosecha de <i>Fragaria vesca</i>	Mixta Cuali- Cuantitativa	Nominal Razón	Directa	– Índice se severidad	- 0 (0%) - 1 (5%) - 2 (15%) - 3 (45%) - 4 (75%) - 5 (100%)

ANEXO B. Instrumentos de recolección de datos

FECHA:		НС	DRAS LUEGO I	DE INICIADO I	EL TRATAMIEI	NTO				
GRUPO	_ FRUTA	PORCENTAJE DE INFECCION DE LA FRUTA								
GROFO	TROTA	0	12	24	36	48	60	72		
BLANCO	A 25°C	0	0	3	1	3	13	0		
CONTROL NEGATIVO	A 25°C	0	0	0	1	2	17	0		
CONTROL POSITIVO	A 25°C	0	0	0	0	2	8	10		
ACEITE ESENCIAL 125ppm	A 25°C	0	0	0	0	0	5	15		
ACEITE ESENCIAL 75ppm	A 25°C	0	0	0	1	2	7	10		
ACEITE ESENCIAL 25ppm	A 25°C	0	0	0	1	2	8	9		

ANEXO C. Porcentaje de inhibición por grupo de investigación

	•	•	Con	trol						Antifú	ingico					•	Twe	een	•	
	12 h	24 h	36 h	48 h	60 h	72 h		12 h	24 h	36 h	48 h	60 h	72 h		12 h	24 h	36 h	48 h	60 h	72 h
1	100.0	100.0	87.5	12.5	0.0	0.0	1	100.0	100.0	100.0	62.5	50.0	0.0	1	100.0	100.0	75.0	62.5	25.0	0.0
2	100.0	100.0	85.9	13.0	0.0	0.0	2	100.0	100.0	100.0	63.0	49.0	0.0	2	100.0	100.0	74.0	62.4	24.5	0.0
3	100.0	100.0	86.0	12.4	0.0	0.0	3	100.0	100.0	100.0	63.3	50.3	0.0	3	100.0	100.0	74.6	62.5	25.6	0.0
4	100.0	100.0	85.6	12.6	0.0	0.0	4	100.0	100.0	100.0	59.0	51.0	0.0	4	100.0	100.0	75.2	63.0	26.0	0.0
5	100.0	100.0	88.0	12.7	0.0	0.0	5	100.0	100.0	100.0	62.1	51.6	0.0	5	100.0	100.0	75.3	64.0	24.8	0.0
6	100.0	100.0	87.5	12.5	0.0	0.0	6	100.0	100.0	100.0	62.4	50.4	0.0	6	100.0	100.0	74.9	61.8	24.3	0.0
7	100.0	100.0	85.9	13.0	0.0	0.0	7	100.0	100.0	100.0	62.7	50.7	0.0	7	100.0	100.0	74.8	62.0	25.6	0.0
8	100.0	100.0	86.0	12.4	0.0	0.0	8	100.0	100.0	100.0	63.2	51.6	0.0	8	100.0	100.0	73.8	62.3	25.8	0.0
9	100.0	100.0	85.6	12.6	0.0	0.0	9	100.0	100.0	100.0	63.0	50.9	0.0	9	100.0	100.0	75.0	62.5	25.5	0.0
10	100.0	100.0	85.7	12.7	0.0	0.0	10	100.0	100.0	100.0	63.8	52.0	0.0	10	100.0	100.0	74.8	62.5	23.0	0.0
11	100.0	100.0	85.5	12.5	0.0	0.0	11	100.0	100.0	100.0	62.0	52.0	0.0	11	100.0	100.0	75.0	63.0	26.3	0.0
12	100.0	100.0	87.5	13.0	0.0	0.0	12	100.0	100.0	100.0	62.5	50.0	0.0	12	100.0	100.0	75.0	62.5	25.6	0.0
13	100.0	100.0	85.9	12.4	0.0	0.0	13	100.0	100.0	100.0	62.5	51.0	0.0	13	100.0	100.0	74.0	62.4	26.0	0.0
14	100.0	100.0	88.0	12.6	0.0	0.0	14	100.0	100.0	100.0	60.0	50.3	0.0	14	100.0	100.0	74.6	62.5	24.8	0.0
15	100.0	100.0	85.6	12.7	0.0	0.0	15	100.0	100.0	100.0	63.3	51.0	0.0	15	100.0	100.0	75.2	63.0	24.3	0.0
16	100.0	100.0	85.5	12.5	0.0	0.0	16	100.0	100.0	100.0	63.4	51.6	0.0	16	100.0	100.0	75.3	64.0	25.6	0.0
17	100.0	100.0	87.5	13.0	0.0	0.0	17	100.0	100.0	100.0	62.1	50.4	0.0	17	100.0	100.0	74.9	61.8	25.8	0.0
18	100.0	100.0	85.9	12.4	0.0	0.0	18	100.0	100.0	100.0	62.4	50.7	0.0	18	100.0	100.0	74.8	62.0	25.5	0.0
19	100.0	100.0	86.0	12.6	0.0	0.0	19	100.0	100.0	100.0	62.7	51.6	0.0	19	100.0	100.0	73.8	62.3	25.0	0.0
20	100.0	100.0	89.0	12.7	0.0	0.0	20	100.0	100.0	100.0	62.9	50.9	0.0	20	100.0	100.0	76.0	62.5	24.7	0.0
	100	100	86.505	12.64	0	0		100	100	100	62.44	50.85	0		100	100	74.8	62.575	25.185	0
			Dosis	125						Doc	is 75						Dos	ic 2E		
	12 h	24 h	36 h	48 h	60 h	72 h		12 h	24 h	36 h	48 h	60 h	72 h		12 h	24 h	36 h	48 h	60 h	72 h
1	100.0	100.0	100.0	100.0	47.5	0.0	1	100.0	100.0	75.0	60.0	31.2	0.0	1	100.0	100.0	50.0	25.0	12.5	0.0
2	100.0	100.0	100.0	100.0	47.0	0.0	2	100.0	100.0	74.6	59.0	32.0	0.0	2	100.0	100.0	51.0	24.6		0.0
3	100.0	100.0	100.0	100.0	46.8	0.0	3	100.0	100.0	76.0	60.2	32.6	0.0	3	100.0	100.0	50.3	25.3		0.0
4	100.0	100.0	100.0	100.0	49.0	0.0	4	100.0	100.0	75.3	59.3	32.5	0.0	4	100.0	100.0	50.4	25.6		0.0
5	100.0	100.0	100.0	100.0	48.0	0.0	5	100.0	100.0	76.2	58.0	31.4	0.0	5	100.0	100.0	50.6	24.1	14.0	0.0
6	100.0	100.0	100.0	100.0	46.0	0.0	6	100.0	100.0	76.1	58.6	31.5	0.0	6	100.0	100.0	51.2	24.6		0.0
7	100.0	100.0	100.0	100.0	47.0	0.0	7	100.0	100.0	75.0	62.0	31.5	0.0	7	100.0	100.0	51.6	24.8		0.0
8	100.0	100.0	100.0	100.0	46.2	0.0	8	100.0	100.0	74.9	60.5	31.5	0.0	8	100.0	100.0	52.3	25.6		0.0
9	100.0	100.0	100.0	100.0	46.8	0.0	9	100.0	100.0	74.5	60.8	31.7	0.0	9	100.0	100.0	52.6	25.9		0.0
10	100.0	100.0	100.0	100.0	48.0	0.0	10	100.0	100.0	76.3	61.5	32.0	0.0	10	100.0	100.0	50.0	24.8		0.0
11	100.0	100.0	100.0	100.0	47.5	0.0	11	100.0	100.0	76.0	60.2	32.5	0.0	11	100.0	100.0	51.1	26.0		0.0
12	100.0	100.0	100.0	100.0	47.6	0.0	12	100.0	100.0	75.2	59.3	33.0	0.0	12	100.0	100.0	50.3	25.3		0.0
13	100.0	100.0	100.0	100.0	46.8	0.0	13	100.0	100.0	75.0	58.0	31.4	0.0	13	100.0	100.0	50.4	25.6		0.0
14	100.0	100.0	100.0	100.0	47.3	0.0	14	100.0	100.0	74.6	58.6	31.5	0.0	14	100.0	100.0	50.6	24.1	12.0	0.0
15	100.0	100.0	100.0	100.0	48.0	0.0	15	100.0	100.0	76.0	62.0	31.5	0.0	15	100.0	100.0	51.2	24.6	13.5	0.0
16	100.0	100.0	100.0	100.0	46.0	0.0	16	100.0	100.0	75.3	60.5	31.5	0.0	16	100.0	100.0	51.6	24.8	12.6	0.0
17	100.0	100.0	100.0	100.0	47.0	0.0	17	100.0	100.0	76.2	60.8	31.7	0.0	17	100.0	100.0	49.0	25.6	12.7	0.0
18	100.0	100.0	100.0	100.0	48.0	0.0	18	100.0	100.0	76.1	62.0	32.0	0.0	18	100.0	100.0	52.6	25.9	12.8	0.0
19	100.0	100.0	100.0	100.0	46.8	0.0	19	100.0	100.0	75.0	61.5	32.5	0.0	19	100.0	100.0	50.0	26.1	12.7	0.0
20	100.0	100.0	100.0	100.0	48.0	0.0	20	100.0	100.0	74.9	62.0	30.0	0.0	20	100.0	100.0	50.3	27.0	12.9	0.0
	100	100	100	100	47.265	0		100	100	75.41	60.24	31.775	0		100	100	50.855	25.265	12.665	0

ANEXO D. Estadística descriptiva.

Características estadísticas del nivel de inhibición en horas

	N	Media	Desv.	Mínimo	Máximo
			Desviación		
Inhibición de 12 horas	120	100,0000	,00000	100,00	100,00
Inhibición de 24 horas	120	100,0000	,00000	100,00	100,00
Inhibición de 36 horas	120	81,2617	17,06587	49,00	100,00
Inhibición de 48 horas	120	53,8600	28,52032	12,40	100,00
Inhibición de 60 horas	120	27,9567	18,04309	,00	52,00
Inhibición de 72 horas	120	,0000	,00000	,00	,00

		Prueba	a de Kolmog	jórov-Smirn	OV		
		INH_12H	INH_24H	INH_36H	INH_48H	INH_60H	INH_72H
N		120	120	120	120	120	120
Parámetros	Media	100,0000	100,0000	81,2617	53,8600	27,9567	,0000
normales ^{a,b}	Desv.	,00000°	,00000°	17,06587	28,52032	18,04309	,00000°
	Desviación						
Máximas	Absoluto			,197	,224	,175	
diferencias	Positivo			,136	,194	,114	
extremas	Negativo			-,197	-,224	-,175	
Estadístico de	prueba			,197	,224	,175	
Sig. asintótica(bilateral)			,000 ^d	,000 ^d	,000 ^d	

a. La distribución de prueba es normal.

Ho (a ≥ 0.05): Los porcentajes de inhibición de crecimiento de hongos ambientales son normales.

H1 (a < 0.05): Los porcentajes de inhibición de crecimiento de hongos ambientales NO son normales.

b. Se calcula a partir de datos.

c. La distribución no tiene varianza para esta variable. La prueba de Kolmogórov-Smirnov de una muestra no se puede realizar.

d. Corrección de significación de Lilliefors.

ANEXO E. Homocedasticidad

	Prueba de hom	ogeneidad de	varianzas	5	
		Estadístico	gl1	gl2	Sig.
		de Levene			
Inhibición	Se basa en la media	26,022	5	114	,000
de 36	Se basa en la mediana	9,751	5	114	,000
horas	Se basa en la mediana	9,751	5	48,310	,000
	y con gl ajustado				
	Se basa en la media	23,461	5	114	,000
	recortada				

	Prueba de hom	ogeneidad de	varianzas	3	
		Estadístico	gl1	gl2	Sig.
		de Levene			
Inhibición	Se basa en la media	11,952	5	114	,000
de 48	Se basa en la mediana	11,237	5	114	,000
horas	Se basa en la mediana	11,237	5	57,451	,000
	y con gl ajustado				
	Se basa en la media	11,522	5	114	,000
	recortada				

	Prueba de homoge	eneidad de vari	anzas		
		Estadístico de Levene	gl1	gl2	Sig.
Inhibición	Se basa en la media	7,006	5	114	,000
de 60 horas	Se basa en la mediana	5,488	5	114	,000
	Se basa en la mediana y con gl ajustado	5,488	5	90,784	,000
	Se basa en la media recortada	6,852	5	114	,000

Ho (a ≥ 0.05): La varianza de los porcentajes de inhibición de crecimiento de hongos ambientales son homogéneas entre los grupos de experimentación.

H1 (a < 0.05): La varianza de los porcentajes de inhibición de crecimiento de hongos ambientales NO son homogéneas entre los grupos de experimentación.

ANEXO F. Comparaciones múltiples post-Hoc: 36, 48 y 60 horas

		Post-	Hoc 36 hora	 S		
Variable dependier	nte: Inhibición de 36 h	oras				
Games-Howell						
(I)	(J) GRUPO_EXP	Diferencia de	Desv. Error	Sig.	Intervalo de confianza al 95	
GRUPO_EXP		medias (I-J)			Límite inferior	Límite
						superior
Control	Control Positivo	-13,49500*	,24067	,000	-14,2554	-12,7346
	Control Tween	11,70500 [*]	,27052	,000	10,8791	12,5309
	25 ppm	35,65000*	,31921	,000	34,6915	36,6085
	75 ppm	11,09500 [*]	,27838	,000	10,2492	11,9408
	125 ppm	-13,49500 [*]	,24067	,000	-14,2554	-12,7346
Control Positivo	Control	13,49500 [*]	,24067	,000	12,7346	14,2554
	Control Tween	25,20000 [*]	,12354	,000	24,8096	25,5904
	25 ppm	49,14500 [*]	,20970	,000	48,4824	49,8076
	75 ppm	24,59000*	,13991	,000	24,1479	25,0321
	125 ppm	,00000	,00000		,0000	,0000
Control Tween	Control	-11,70500 [*]	,27052	,000	-12,5309	-10,8791
	Control Positivo	-25,20000*	,12354	,000	-25,5904	-24,8096
	25 ppm	23,94500 [*]	,24338	,000	23,2059	24,6841
	75 ppm	-,61000 [*]	,18665	,026	-1,1704	-,0496
	125 ppm	-25,20000 [*]	,12354	,000	-25,5904	-24,8096
25 ppm	Control	-35,65000*	,31921	,000	-36,6085	-34,6915
	Control Positivo	-49,14500 [*]	,20970	,000	-49,8076	-48,4824
	Control Tween	-23,94500 [*]	,24338	,000	-24,6841	-23,2059
	75 ppm	-24,55500 [*]	,25208	,000	-25,3170	-23,7930
	125 ppm	-49,14500 [*]	,20970	,000	-49,8076	-48,4824
75 ppm	Control	-11,09500 [*]	,27838	,000	-11,9408	-10,2492
	Control Positivo	-24,59000 [*]	,13991	,000	-25,0321	-24,1479
	Control Tween	,61000 [*]	,18665	,026	,0496	1,1704
	25 ppm	24,55500 [*]	,25208	,000	23,7930	25,3170
	125 ppm	-24,59000 [*]	,13991	,000	-25,0321	-24,1479
125 ppm	Control	13,49500 [*]	,24067	,000	12,7346	14,2554
	Control Positivo	,00000	,00000		,0000	,0000
	Control Tween	25,20000 [*]	,12354	,000	24,8096	25,5904
	25 ppm	49,14500 [*]	,20970	,000	48,4824	49,8076
	75 ppm	24,59000 [*]	,13991	,000	24,1479	25,0321
*. La diferencia de	medias es significativa	a en el nivel 0.05.				

		Comparacio	ones múltip	oles		
Variable dependie	ente: Inhibición de 3	6 horas				
HSD Tukey	ı	ı	T			
(I)	(J)	Diferencia	Desv.	Sig.	Intervalo de co	nfianza al 95%
GRUPO_EXP	GRUPO_EXP	de medias (I-	Error		Límite	Límite
		J)			inferior	superior
Control	Control Positivo	-13,49500 [*]	,21349	,000	-14,1138	-12,8762
	Control Tween	11,70500 [*]	,21349	,000	11,0862	12,3238
	25 ppm	35,65000 [*]	,21349	,000	35,0312	36,2688
	75 ppm	11,09500 [*]	,21349	,000	10,4762	11,7138
	125 ppm	-13,49500 [*]	,21349	,000	-14,1138	-12,8762
Control	Control	13,49500 [*]	,21349	,000	12,8762	14,1138
Positivo	Control Tween	25,20000 [*]	,21349	,000	24,5812	25,8188
	25 ppm	49,14500 [*]	,21349	,000	48,5262	49,7638
	75 ppm	24,59000 [*]	,21349	,000	23,9712	25,2088
	125 ppm	,00000	,21349	1,000	-,6188	,6188
Control Tween	Control	-11,70500 [*]	,21349	,000	-12,3238	-11,0862
	Control Positivo	-25,20000*	,21349	,000	-25,8188	-24,5812
	25 ppm	23,94500 [*]	,21349	,000	23,3262	24,5638
	75 ppm	-,61000	,21349	,056	-1,2288	,0088
	125 ppm	-25,20000 [*]	,21349	,000	-25,8188	-24,5812
25 ppm	Control	-35,65000*	,21349	,000	-36,2688	-35,0312
	Control Positivo	-49,14500*	,21349	,000	-49,7638	-48,5262
	Control Tween	-23,94500 [*]	,21349	,000	-24,5638	-23,3262
	75 ppm	-24,55500 [*]	,21349	,000	-25,1738	-23,9362
	125 ppm	-49,14500 [*]	,21349	,000	-49,7638	-48,5262
75 ppm	Control	-11,09500 [*]	,21349	,000	-11,7138	-10,4762
	Control Positivo	-24,59000 [*]	,21349	,000	-25,2088	-23,9712
	Control Tween	,61000	,21349	,056	-,0088	1,2288
	25 ppm	24,55500 [*]	,21349	,000	23,9362	25,1738
	125 ppm	-24,59000 [*]	,21349	,000	-25,2088	-23,9712
125 ppm	Control	13,49500 [*]	,21349	,000	12,8762	14,1138
	Control Positivo	,00000	,21349	1,000	-,6188	,6188
	Control Tween	25,20000 [*]	,21349	,000	24,5812	25,8188
	25 ppm	49,14500 [*]	,21349	,000	48,5262	49,7638
	75 ppm	24,59000 [*]	,21349	,000	23,9712	25,2088
*. La diferencia d	e medias es significa	ativa en el nivel 0.0	05.			

		Comparacio	nes múltipl	es		
·	ente: Inhibición de	48 horas				
HSD Tukey	T (D					
(I) GRUPO_EXP	(J) GRUPO_EXP	Diferencia de medias (I-	Desv. Error	Sig.	Intervalo de confianza al 95%	
GRUPO_EXP	GRUPO_EXP	J)	EIIOI		Límite	Límite
Control	Control	-49,80000*	,25984	,000	inferior -50,5532	superior -49,0468
Control	Positivo	-43,00000	,20004	,000	-30,3332	-43,0400
	Control Tween	-49,93500 [*]	,25984	,000	-50,6882	-49,1818
	25 ppm	-12,62500 [*]	,25984	,000	-13,3782	-11,8718
	75 ppm	-47,60000 [*]	,25984	,000	-48,3532	-46,8468
	125 ppm	-87,36000 [*]	,25984	,000	-88,1132	-86,6068
Control	Control	49,80000 [*]	,25984	,000	49,0468	50,5532
Positivo	Control Tween	-,13500	,25984	,995	-,8882	,6182
	25 ppm	37,17500 [*]	,25984	,000	36,4218	37,9282
	75 ppm	2,20000 [*]	,25984	,000	1,4468	2,9532
	125 ppm	-37,56000 [*]	,25984	,000	-38,3132	-36,8068
Control Tween	Control	49,93500*	,25984	,000	49,1818	50,6882
	Control Positivo	,13500	,25984	,995	-,6182	,8882
	25 ppm	37,31000 [*]	,25984	,000	36,5568	38,0632
	75 ppm	2,33500 [*]	,25984	,000	1,5818	3,0882
	125 ppm	-37,42500 [*]	,25984	,000	-38,1782	-36,6718
25 ppm	Control	12,62500 [*]	,25984	,000	11,8718	13,3782
	Control	-37,17500 [*]	,25984	,000	-37,9282	-36,4218
	Positivo Control Tween	-37,31000 [*]	,25984	,000	-38,0632	-36,5568
	75 ppm	-34,97500*	,25984	,000	-35,7282	-34,2218
	125 ppm	-74,73500*	,25984	,000	-75,4882	-73,9818
75 ppm	Control	47,60000*	,25984	,000	46,8468	48,3532
70 ррш	Control	-2,20000°			•	-1,4468
	Positivo	-2,20000	,25984	,000	-2,9532	-1,4400
	Control Tween	-2,33500*	,25984	,000	-3,0882	-1,5818
	25 ppm	34,97500*	,25984	,000	34,2218	35,7282
	125 ppm	-39,76000*	,25984	,000	-40,5132	-39,0068
125 ppm	Control	87,36000 [*]	,25984	,000	86,6068	88,1132
	Control Positivo	37,56000 [*]	,25984	,000	36,8068	38,3132
	Control Tween	37,42500 [*]	,25984	,000	36,6718	38,1782
	25 ppm	74,73500 [*]	,25984	,000	73,9818	75,4882
	75 ppm	39,76000 [*]	,25984	,000	39,0068	40,5132

		Comparaci	ones múltip	oles		
•	ente: Inhibición de	48 horas				
Games-Howell	I (1)	<u> </u>		,		
(I) GRUPO_EXP	(J) GRUPO_EXP	Diferencia	Desv.	Sig.	Intervalo de confianza al	
		de medias	Error	-	95	%
		(I-J)			Límite	Límite
Control	Control	-49,80000*	,25586	,000	inferior -50,6029	superior -48,9971
	Positivo Control Tween	-49,93500*	,14110	,000	-50,3717	-49,4983
	25 ppm	-12,62500*	,17101	,000	-13,1575	-12,0925
	75 ppm	-47,60000*	,30761	,000	-48,5673	-46,6327
	125 ppm	-87,36000*	,04724	,000	-87,5093	-87,2107
Control Positivo	Control	49,80000*	,25586	,000	48,9971	50,6029
1 OSITIVO	Control Tween	-,13500	,28445	,997	-1,0024	,7324
	25 ppm	37,17500 [*]	,30041	,000	36,2663	38,0837
	75 ppm	2,20000*	,39449	,000	1,0144	3,3856
	125 ppm	-37,56000 [*]	,25146	,000	-38,3545	-36,7655
Control Tween	Control	49,93500*	,14110	,000	49,4983	50,3717
	Control Positivo	,13500	,28445	,997	-,7324	1,0024
	25 ppm	37,31000 [*]	,21141	,000	36,6744	37,9456
	75 ppm	2,33500 [*]	,33176	,000	1,3157	3,3543
	125 ppm	-37,42500 [*]	,13296	,000	-37,8451	-37,0049
25 ppm	Control	12,62500 [*]	,17101	,000	12,0925	13,1575
	Control Positivo	-37,17500 [*]	,30041	,000	-38,0837	-36,2663
	Control Tween	-37,31000 [*]	,21141	,000	-37,9456	-36,6744
	75 ppm	-34,97500 [*]	,34555	,000	-36,0278	-33,9222
	125 ppm	-74,73500 [*]	,16436	,000	-75,2543	-74,2157
75 ppm	Control	47,60000 [*]	,30761	,000	46,6327	48,5673
	Control Positivo	-2,20000 [*]	,39449	,000	-3,3856	-1,0144
	Control Tween	-2,33500 [*]	,33176	,000	-3,3543	-1,3157
	25 ppm	34,97500 [*]	,34555	,000	33,9222	36,0278
	125 ppm	-39,76000 [*]	,30396	,000	-40,7204	-38,7996
125 ppm	Control	87,36000 [*]	,04724	,000	87,2107	87,5093
	Control Positivo	37,56000 [*]	,25146	,000	36,7655	38,3545
	Control Tween	37,42500 [*]	,13296	,000	37,0049	37,8451
	25 ppm	74,73500 [*]	,16436	,000	74,2157	75,2543
	75 ppm	39,76000 [*]	,30396	,000	38,7996	40,7204
*. La diferencia d	de medias es signific	cativa en el nivel	0.05.			

Variable dependi	ente: Inhibición de	Comparacio	ones muitip	oies		
Games-Howell	ente. Ininibición de	00 110145				
(I) GRUPO_EXP	(J) GRUPO_EXP	Diferencia de medias (I-J)	Desv. Error	Sig.	Intervalo de confianza al 95% Límite Límite	
Control	Control	-50,85000*	,16929	,000	inferior -51,3849	superior -50,3151
	Positivo Control Tween	-25,18500*	,17491	,000	-25,7377	-24,6323
	25 ppm	-12,66500*	,13636	,000	-13,0958	-12,2342
	75 ppm	-31,77500 [*]	,14634	,000	-32,2374	-31,3126
	125 ppm	-47,26500 [*]	,17279	,000	-47,8110	-46,7190
Control	Control	50,85000*	,16929	,000	50,3151	51,3849
Positivo	Control Tween	25,66500*	,24342	,000	24,9347	26,3953
	25 ppm	38,18500 [*]	,21737	,000	37,5314	38,8386
	75 ppm	19,07500*	,22377	,000	18,4030	19,7470
	125 ppm	3,58500 [*]	,24190	,000	2,8593	4,3107
Control Tween	Control	25,18500 [*]	,17491	,000	24,6323	25,7377
	Control Positivo	-25,66500 [*]	,24342	,000	-26,3953	-24,9347
	25 ppm	12,52000*	,22178	,000	11,8526	13,1874
	75 ppm	-6,59000*	,22805	,000	-7,2752	-5,9048
	125 ppm	-22,08000*	,24587	,000	-22,8176	-21,3424
25 ppm	Control	12,66500 [*]	,13636	,000	12,2342	13,0958
	Control Positivo	-38,18500 [*]	,21737	,000	-38,8386	-37,5314
	Control Tween	-12,52000*	,22178	,000	-13,1874	-11,8526
	75 ppm	-19,11000*	,20002	,000	-19,7102	-18,5098
	125 ppm	-34,60000 [*]	,22011	,000	-35,2622	-33,9378
75 ppm	Control	31,77500*	,14634	,000	31,3126	32,2374
	Control Positivo	-19,07500 [*]	,22377	,000	-19,7470	-18,4030
	Control Tween	6,59000 [*]	,22805	,000	5,9048	7,2752
	25 ppm	19,11000 [*]	,20002	,000	18,5098	19,7102
	125 ppm	-15,49000 [*]	,22643	,000	-16,1702	-14,8098
125 ppm	Control	47,26500 [*]	,17279	,000	46,7190	47,8110
	Control Positivo	-3,58500 [*]	,24190	,000	-4,3107	-2,8593
	Control Tween	22,08000*	,24587	,000	21,3424	22,8176
	25 ppm	34,60000*	,22011	,000	33,9378	35,2622
	75 ppm le medias es signific	15,49000*	,22643	,000	14,8098	16,1702

Selección de la fresa y secado

fresas sumergidas en concentración de 125ppm